The α-spectral radius of uniform hypergraphs concerning degrees and domination number

被引:0
|
作者
Wang, Qiannan [2 ]
Kang, Liying [2 ]
Shan, Erfang [1 ]
Liang, Zuosong [3 ]
机构
[1] Shanghai Univ, Sch Management, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[3] Qufu Normal Univ, Sch Management, Rizhao 276800, Peoples R China
关键词
Uniform hypergraph; alpha-Spectral radius; Extremal hypergraph; Domination; NONNEGATIVE TENSORS; EIGENVALUES;
D O I
10.1007/s10878-019-00440-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For 0 <= alpha < 1 and an r-uniform hypergraph H, the a-spectral radius of H is the maximum modulus of eigenvalues of alpha D(H) + (1 - alpha)A(H), where D(H) and A(H) are the diagonal tensor of degrees and the adjacency tensor of H, respectively. In this paper, we give a lower bound on the a-spectral radius of a linear alpha-uniform hypergraph in terms of its domination number. Then, we obtain some bounds on the aspectral radius in terms of vertex degrees and we characterize the extremal hypergraphs attaining the bound.
引用
收藏
页码:1128 / 1142
页数:15
相关论文
共 50 条
  • [21] Distance (signless) Laplacian spectral radius of uniform hypergraphs
    Lin, Hongying
    Zhou, Bo
    Wang, Yanna
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 529 : 271 - 293
  • [22] The (Signless Laplacian) Spectral Radius (Of Subgraphs) of Uniform Hypergraphs
    Duan, Cunxiang
    Wang, Ligong
    Xiao, Peng
    Li, Xihe
    FILOMAT, 2019, 33 (15) : 4733 - 4745
  • [23] On the spectral radius of graphs with a given domination number
    Stevanovic, Dragan
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) : 1854 - 1864
  • [24] Domination game on uniform hypergraphs
    Bujtas, Csilla
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    DISCRETE APPLIED MATHEMATICS, 2019, 258 : 65 - 75
  • [25] Maximum spectral radius of outerplanar 3-uniform hypergraphs
    Ellingham, M. N.
    Lu, Linyuan
    Wang, Zhiyu
    JOURNAL OF GRAPH THEORY, 2022, 100 (04) : 671 - 685
  • [26] Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs
    Jun He
    Yan-Min Liu
    Jun-Kang Tian
    Xiang-Hu Liu
    Bulletin of the Iranian Mathematical Society, 2019, 45 : 583 - 591
  • [27] Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs
    He, Jun
    Liu, Yan-Min
    Tian, Jun-Kang
    Liu, Xiang-Hu
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (02) : 583 - 591
  • [28] On extremal spectral radius of blow-up uniform hypergraphs
    Xu, Shao-Han
    Hu, Fu-Tao
    Wang, Yi
    Linear Algebra and Its Applications, 2023, 667 : 71 - 87
  • [29] On extremal spectral radius of blow-up uniform hypergraphs
    Xu, Shao-Han
    Hu, Fu-Tao
    Wang, Yi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 667 : 71 - 87
  • [30] Bounds for the incidence Q-spectral radius of uniform hypergraphs
    Zhang, Peng-Li
    Zhang, Xiao-Dong
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 490