Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs

被引:0
|
作者
Jun He
Yan-Min Liu
Jun-Kang Tian
Xiang-Hu Liu
机构
[1] Zunyi Normal College,School of mathematics
关键词
Hypergraph; Adjacency tensor; Signless Laplacian tensor; Spectral radius; 15A42; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} be a k-uniform hypergraph on n vertices with degree sequence Δ=d1≥⋯≥dn=δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta =d_1 \ge \cdots \ge d_n=\delta $$\end{document}. Ei\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_i$$\end{document} denotes the set of edges of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} containing i. The average 2-degree of vertex i of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} is mi=∑{i,i2,…ik}∈Eidi2…dik/dik-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_i = {\sum \nolimits _{\{ i,i_2 , \ldots i_k \} \in E_i } {d_{i_2 } \ldots d_{i_k } } } / d_i^{k - 1}$$\end{document}. In this paper, in terms of mi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_i$$\end{document} and di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_i$$\end{document}, we give some upper bounds and lower bounds for the spectral radius of the signless Laplacian tensor (Q(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(\mathcal {H})$$\end{document}) of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}. Some examples are given to show the tightness of these bounds.
引用
收藏
页码:583 / 591
页数:8
相关论文
共 50 条
  • [1] Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs
    He, Jun
    Liu, Yan-Min
    Tian, Jun-Kang
    Liu, Xiang-Hu
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (02) : 583 - 591
  • [2] Sharp bounds for ordinary and signless Laplacian spectral radii of uniform hypergraphs
    Lin, Hongying
    Mo, Biao
    Zhou, Bo
    Weng, Weiming
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 285 : 217 - 227
  • [3] Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs
    Jun He
    Yanmin Liu
    Junkang Tian
    Xianghu Liu
    [J]. Frontiers of Mathematics in China, 2019, 14 : 17 - 24
  • [4] Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs
    He, Jun
    Liu, Yanmin
    Tian, Junkang
    Liu, Xianghu
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (01) : 17 - 24
  • [5] Distance (signless) Laplacian spectral radius of uniform hypergraphs
    Lin, Hongying
    Zhou, Bo
    Wang, Yanna
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 529 : 271 - 293
  • [6] The (Signless Laplacian) Spectral Radius (Of Subgraphs) of Uniform Hypergraphs
    Duan, Cunxiang
    Wang, Ligong
    Xiao, Peng
    Li, Xihe
    [J]. FILOMAT, 2019, 33 (15) : 4733 - 4745
  • [7] Sharp bounds for the signless Laplacian spectral radius of digraphs
    Lang, Weiwei
    Wang, Ligong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 43 - 49
  • [8] Sharp upper bounds on the spectral radius of the signless Laplacian matrix of a graph
    Maden, A. Dilek
    Das, Kinkar Ch.
    Cevik, A. Sinan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5025 - 5032
  • [9] Sharp upper bounds for the adjacency and the signless Laplacian spectral radius of graphs
    Xian-zhang Wu
    Jian-ping Liu
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2019, 34 : 100 - 112
  • [10] Sharp bounds for the signless Laplacian spectral radius in terms of clique number
    He, Bian
    Jin, Ya-Lei
    Zhang, Xiao-Dong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) : 3851 - 3861