Discrete semipositone higher-order equations

被引:8
|
作者
Agarwal, RP [1 ]
Grace, SR
O'Regan, D
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Cairo Univ, Dept Engn Math, Giza 12221, Egypt
[3] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
关键词
semipositone; (n; p) and conjugate; Krasnoselskii's fixed-point theorem; existence theory;
D O I
10.1016/S0898-1221(03)00079-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes existence for semipositone (n, p) and conjugate discrete boundary value problems. Our analysis relies on Krasnoselskii's fixed-point theorem in a cone. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1171 / 1179
页数:9
相关论文
共 50 条
  • [41] Asymptotics solutions of equations with higher-order degeneracies
    M. V. Korovina
    Doklady Mathematics, 2011, 83 : 182 - 184
  • [42] OSCILLATION CRITERIA IN HIGHER-ORDER NEUTRAL EQUATIONS
    BILCHEV, SJ
    GRAMMATIKOPOULOS, MK
    STAVROULAKIS, IP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 183 (01) : 1 - 24
  • [43] On Higher-Order Wave Equations in GUP Formalism
    Zarrinkamar, S.
    Panahi, H.
    Khorram-Hosseini, S. A.
    FEW-BODY SYSTEMS, 2018, 59 (01)
  • [44] On higher-order Riccati equations as Backlund transformations
    Grundland, AM
    Levi, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (21): : 3931 - 3937
  • [45] Schwarzian derivative in higher-order Riccati equations
    Talukdar, Benoy
    Chatterjee, Supriya
    Sekh, Golam Ali
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (04):
  • [46] Oscillation of higher-order nonlinear difference equations
    Grace, SR
    Lalli, BS
    MATHEMATICAL AND COMPUTER MODELLING, 2005, 41 (4-5) : 485 - 491
  • [47] HIGHER-ORDER NONLINEAR DEGENERATE PARABOLIC EQUATIONS
    BERNIS, F
    FRIEDMAN, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) : 179 - 206
  • [48] The Cauchy problem for higher-order KP equations
    Saut, JC
    Tzvetkov, N
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 153 (01) : 196 - 222
  • [49] A Lagrangian description of the higher-order Painleve equations
    Choudhury, A. Ghose
    Guha, Partha
    Kudryashov, Nikolay A.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (11) : 6612 - 6619
  • [50] Oscillation of higher-order linear difference equations
    Grzegorczyk, G
    Werbowski, J
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (3-5) : 711 - 717