Discrete semipositone higher-order equations

被引:8
|
作者
Agarwal, RP [1 ]
Grace, SR
O'Regan, D
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Cairo Univ, Dept Engn Math, Giza 12221, Egypt
[3] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
关键词
semipositone; (n; p) and conjugate; Krasnoselskii's fixed-point theorem; existence theory;
D O I
10.1016/S0898-1221(03)00079-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes existence for semipositone (n, p) and conjugate discrete boundary value problems. Our analysis relies on Krasnoselskii's fixed-point theorem in a cone. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1171 / 1179
页数:9
相关论文
共 50 条
  • [21] OSCILLATIONS OF HIGHER-ORDER NEUTRAL EQUATIONS
    LADAS, G
    SFICAS, YG
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1986, 27 : 502 - 511
  • [22] SYMMETRIES OF THE HIGHER-ORDER KP EQUATIONS
    CASE, KM
    JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (06) : 1158 - 1159
  • [23] On the solution of higher-order difference equations
    Akgul, Ali
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (17) : 6165 - 6171
  • [24] ON THE BURNETT AND HIGHER-ORDER EQUATIONS OF HYDRODYNAMICS
    GARCIACOLIN, LS
    PHYSICA A, 1983, 118 (1-3): : 341 - 349
  • [25] On a sequence of higher-order wave equations
    Gordoa, P. R.
    Pickering, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (01) : 461 - 491
  • [26] ON A HIGHER-ORDER SYSTEM OF DIFFERENCE EQUATIONS
    Stevic, Stevo
    Alghmdi, Mohammed A.
    Alotaibi, Abdullah
    Shahzad, Naseer
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (47) : 1 - 18
  • [27] On the theory of higher-order Painleve equations
    Gromak, VI
    Zenchenko, AS
    DIFFERENTIAL EQUATIONS, 2004, 40 (05) : 625 - 633
  • [28] HIGHER-ORDER NONLINEAR DISPERSIVE EQUATIONS
    KENIG, CE
    PONCE, G
    VEGA, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (01) : 157 - 166
  • [29] On the Theory of Higher-Order Painlevé Equations
    V. I. Gromak
    A. S. Zenchenko
    Differential Equations, 2004, 40 : 625 - 633
  • [30] Peregrine Solitons of the Higher-Order, Inhomogeneous, Coupled, Discrete, and Nonlocal Nonlinear Schrodinger Equations
    Uthayakumar, T.
    Al Sakkaf, L.
    Al Khawaja, U.
    FRONTIERS IN PHYSICS, 2020, 8