Discrete semipositone higher-order equations

被引:8
|
作者
Agarwal, RP [1 ]
Grace, SR
O'Regan, D
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Cairo Univ, Dept Engn Math, Giza 12221, Egypt
[3] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
关键词
semipositone; (n; p) and conjugate; Krasnoselskii's fixed-point theorem; existence theory;
D O I
10.1016/S0898-1221(03)00079-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes existence for semipositone (n, p) and conjugate discrete boundary value problems. Our analysis relies on Krasnoselskii's fixed-point theorem in a cone. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1171 / 1179
页数:9
相关论文
共 50 条
  • [1] Semipositone higher-order differential equations
    Agarwal, RP
    Grace, SR
    O'Regan, D
    APPLIED MATHEMATICS LETTERS, 2004, 17 (02) : 201 - 207
  • [2] Positive solutions of semipositone higher-order differential equations on time scales
    Hu, Liang-Gen
    Zhou, Xian-Feng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (09) : 3033 - 3045
  • [3] Multiple positive solutions for singular higher-order semipositone fractional differential equations with p-Laplacian
    Zhong, Qiuyan
    Zhang, Xingqiu
    Gu, Lufeng
    Lei, Lei
    Zhao, Zengqin
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2020, 25 (05): : 806 - 826
  • [4] Solutions of the higher-order Manakov-type continuous and discrete equations
    Chowdury, A.
    Ankiewicz, A.
    Akhmediev, N.
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [5] HIGHER-ORDER LINDLEY EQUATIONS
    KARPELEVICH, FI
    KELBERT, MY
    SUHOV, YM
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 53 (01) : 65 - 96
  • [6] Higher-order Lagrangian equations of higher-order motive mechanical system
    Zhao Hong-Xia
    Ma Shan-Jun
    Shi Yong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (02) : 479 - 481
  • [7] Higher-Order Lagrangian Equations of Higher-Order Motive Mechanical System
    ZHAO Hong-Xia MA Shan-Jun SHI Yong College of Physics and Communication Electronics
    Communications in Theoretical Physics, 2008, 49 (02) : 479 - 481
  • [8] Higher-order lazy narrowing calculus: A solver for higher-order equations
    Ida, T
    Marin, M
    Suzuki, T
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2001, 2001, 2178 : 479 - 493
  • [9] HIGHER-ORDER DIFFERENTIAL-EQUATIONS AND HIGHER-ORDER LAGRANGIAN MECHANICS
    CRAMPIN, M
    SARLET, W
    CANTRIJN, F
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1986, 99 : 565 - 587
  • [10] Existence of Positive Solutions for Semipositone Higher-Order BVPS on Time Scales
    Yuguo Lin
    Minghe Pei
    Advances in Difference Equations, 2010