Using deep learning to enhance event geometry reconstruction for the telescope array surface detector

被引:9
|
作者
Ivanov, D. [1 ,2 ]
Kalashev, O. E. [3 ,4 ,5 ]
Kuznetsov, M. Yu [3 ,6 ]
Rubtsov, G., I [3 ]
Sako, T. [7 ]
Tsunesada, Y. [8 ,9 ]
Zhezher, Y., V [3 ,7 ]
机构
[1] Univ Utah, High Energy Astrophys Inst, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA
[3] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia
[4] Moscow Inst Phys & Technol, 9 Inst Skiy Per, Dolgoprudnyi 141701, Moscow Region, Russia
[5] Novosibirsk State Univ, Pirogova 2, Novosibirsk 630090, Russia
[6] Univ Libre Bruxelles, Serv Phys Theor, Blvd Triomphe,CP225, B-1050 Brussels, Belgium
[7] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan
[8] Osaka City Univ, Grad Sch Sci, Osaka, Osaka 5580022, Japan
[9] Osaka City Univ, Nambu Yoichiro Inst Theoret & Expt Phys, Osaka, Osaka 5588585, Japan
来源
基金
俄罗斯科学基金会;
关键词
ultra-high energy cosmic rays; machine learning; telescope array observatory; ENERGY COSMIC-RAYS; ARRIVAL DIRECTIONS; FLUORESCENCE DETECTORS; SCALE ANISOTROPY; EEV; DISTANCES; SEARCH; FLUX;
D O I
10.1088/2632-2153/abae74
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The extremely low flux of ultra-high energy cosmic rays (UHECR) makes their direct observation by orbital experiments practically impossible. For this reason all current and planned UHECR experiments detect cosmic rays indirectly by observing the extensive air showers (EAS) initiated by cosmic ray particles in the atmosphere. The world largest statistics of the ultra-high energy EAS events is recorded by the networks of surface stations. In this paper we consider a novel approach for reconstruction of the arrival direction of the primary particle based on the deep convolutional neural network. The latter is using raw time-resolved signals of the set of the adjacent trigger stations as an input. The Telescope Array (TA) Surface Detector (SD) is an array of 507 stations, each containing two layers plastic scintillator with an area of 3 m(2). The training of the model is performed with the Monte-Carlo dataset. It is shown that within the Monte-Carlo simulations, the new approach yields better resolution than the traditional reconstruction method based on the fitting of the EAS front. The details of the network architecture and its optimization for this particular task are discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Telescope Array Surface Detector Energy and Arrival Direction Estimation Using Deep Learning
    Kalashev, O. E.
    Ivanov, D.
    Kuznetsov, M. Yu.
    Rubtsov, G. I.
    Sako, T.
    Tsunesada, Y.
    Zhezher, Y. V.
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [2] Study Cosmic Ray Mass Composition using Deep Learning in Telescope Array Surface Array Detector
    Kalashev, Oleg
    Kuznetsov, Mikhail
    36TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2019, 2021,
  • [3] Event-by-event reconstruction of the shower maximum Xmax with the Surface Detector of the Pierre Auger Observatory using deep learning
    Glombitza, Jonas
    Auger, Pierre
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [4] The surface detector array of the Telescope Array experiment
    Abu-Zayyad, T.
    Aida, R.
    Allen, M.
    Anderson, R.
    Azuma, R.
    Barcikowski, E.
    Belz, J. W.
    Bergman, D. R.
    Blake, S. A.
    Cady, R.
    Cheon, B. G.
    Chiba, J.
    Chikawa, M.
    Cho, E. J.
    Cho, W. R.
    Fujii, H.
    Fujii, T.
    Fukuda, T.
    Fukushima, M.
    Gorbunov, D.
    Hanlon, W.
    Hayashi, K.
    Hayashi, Y.
    Hayashida, N.
    Hibino, K.
    Hiyama, K.
    Honda, K.
    Iguchi, T.
    Ikeda, D.
    Ikuta, K.
    Inoue, N.
    Ishii, T.
    Ishimori, R.
    Ivanov, D.
    Iwamoto, S.
    Jui, C. C. H.
    Kadota, K.
    Kakimoto, F.
    Kalashev, O.
    Kanbe, T.
    Kasahara, K.
    Kawai, H.
    Kawakami, S.
    Kawana, S.
    Kido, E.
    Kim, H. B.
    Kim, H. K.
    Kim, J. H.
    Kim, J. H.
    Kitamoto, K.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2012, 689 : 87 - 97
  • [5] Mass composition of Telescope Array's surface detectors events using deep learning
    Kharuk, I.
    Kalashev, O.
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [6] Performance of the surface scintillation detector for the telescope array
    Hayashi, Y.
    Kawakami, S.
    Matsumoto, K.
    Matsumoto, Y.
    Matsuyama, T.
    Nonaka, T.
    Okuda, T.
    Oshima, A.
    Tanaka, H.
    Proceedings of the 29th International Cosmic Ray Conference Vol 8: HE 1.5, 2005, : 161 - 164
  • [7] An Event Reconstruction Method for the Telescope Array Fluorescence Detectors
    Fujii, T.
    Fukushima, M.
    Hayashi, K.
    Honda, K.
    Ikeda, D.
    Ishimori, R.
    Kobayashi, Y.
    Ogio, S.
    Sagawa, H.
    Takahashi, Y.
    Tameda, Y.
    Tokuno, H.
    Tomida, T.
    Tsunesada, Y.
    Udo, S.
    Yamazaki, K.
    INTERNATIONAL SYMPOSIUM ON THE RECENT PROGRESS OF ULTRA-HIGH ENERGY COSMIC RAY OBSERVATION, 2011, 1367 : 149 - 152
  • [8] Deep Learning the Effects of Photon Sensors on the Event Reconstruction Performance in an Antineutrino Detector
    Loh, Chang-Wei
    Qian, Zhi-Qiang
    Zhang, Rui
    Liu, You-Hang
    Cao, De-Wen
    Wang, Wei
    Yang, Hai-Bo
    Qi, Ming
    ADVANCES IN HIGH ENERGY PHYSICS, 2018, 2018
  • [9] Supergalactic Structure of Multiplets with the Telescope Array Surface Detector
    Lundquist, Jon Paul
    Sokolsky, Pierre, V
    ULTRA HIGH ENERGY COSMIC RAYS 2018 (UHECR 2018), 2019, 210
  • [10] Prototype Open Event Reconstruction Pipeline for the Cherenkov Telescope Array
    Noethe, M.
    Kosack, K.
    Nickel, L.
    Peresano, M.
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,