Parameter estimation of non-linear systems with Hammerstein models using neuro-fuzzy and polynomial approximation approaches

被引:0
|
作者
Vieira, J [1 ]
Mota, A [1 ]
机构
[1] Escola Super Tecnol Castelo Branco, Dept Engn Electrotecn, P-6000 Castelo Branco, Portugal
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents two different approaches for parameter estimation of non-linear systems with Hammerstein models. The Hammerstein model consists in the cascade connection of two blocks: a non-linear static part and a linear dynamic part. For modelling the non-linear static function part two different techniques were used: neuro-fuzzy and Polynomial approximation approaches. The Neuro-Fuzzy Hammerstein Model (NFHM) approach uses a zero-order Takagi-Sugeno fuzzy model to approximate the non-linear static part and is tuned using gradient decent algorithm. The Polynomial Approximation Hammerstein Model (PAHM) approach uses a polynomial of order n to approximate the non-linear static part and is tuned using a least squares algorithm. For the linear dynamic part both algorithms use the least squares parameter estimation. The methods were implemented off-line, in two steps: first, estimation of the nonlinear static parameters and second estimation of the linear dynamic parameters. Finally, a gas water heater non-linear system was modelled as an illustrative example of these two approaches.
引用
收藏
页码:849 / 854
页数:6
相关论文
共 50 条
  • [31] PARAMETER ESTIMATION OF NON-LINEAR REACTION SYSTEMS.
    Lin, Cheng
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 1987, 3 (03): : 373 - 379
  • [33] A COMPARATIVE STUDY OF NON-LINEAR FORECAST COMBINATION OF RAINFALL-RUNOFF MODELS USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Tareghian, Reza
    Pourreza Bilondi, Mohsen
    CARPATHIAN JOURNAL OF EARTH AND ENVIRONMENTAL SCIENCES, 2013, 8 (04): : 41 - 54
  • [34] Using Neuro-Fuzzy models to benchmark Road Safety Management Systems
    Sekar, Maris
    Moshirpour, Mohammad
    Serfontein, Julian
    Far, Behrouz H.
    2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 4012 - 4017
  • [35] Inversion of non-linear stochastic models for the purpose of parameter estimation
    Markusson, O
    Hjalmarsson, H
    INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (18) : 1783 - 1795
  • [36] Experimental designs for precise parameter estimation for non-linear models
    Xiao, Z
    Vien, A
    MINERALS ENGINEERING, 2004, 17 (03) : 431 - 436
  • [37] Lateral Aircraft Parameter Estimation Using Neuro-Fuzzy and Genetic Algorithm Based Method
    Roy, Abhishek Ghosh
    Peyada, N. K.
    2017 IEEE AEROSPACE CONFERENCE, 2017,
  • [38] CALIBRATION OF THE ROBOTIC ARM WITH CORRECTIONS USING LOCAL LINEAR NEURO-FUZZY MODELS
    Benes, Petr
    Hladik, Jan
    Pelikan, Jan
    Neusser, Zdenek
    Necas, Martin
    Sveda, Jiri
    Valasek, Michael
    Sika, Zbynek
    MM SCIENCE JOURNAL, 2022, 2022 : 6225 - 6232
  • [39] Parameter Estimation of Neuro-Fuzzy Wiener Model With Colored Noise Using Separable Signals
    Lyu, Bensheng
    Jia, Li
    Li, Feng
    IEEE ACCESS, 2020, 8 : 67047 - 67058
  • [40] Fractional Hammerstein system identification using polynomial non-linear state space model
    Hammar, Karima
    Djamah, Tounsia
    Bettayeb, Maamar
    3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT 2015), 2015,