Fractional Hammerstein system identification using polynomial non-linear state space model

被引:0
|
作者
Hammar, Karima [1 ]
Djamah, Tounsia [2 ]
Bettayeb, Maamar [3 ]
机构
[1] Univ M Mammeri Tizi Ouzou UMMTO, L2CSP, Tizi Ouzou, Algeria
[2] UMMTO, L2CSP, Tizi Ouzou, Algeria
[3] Univ Sharjah, Dept Elect & Comp Engn, Sharjah, U Arab Emirates
关键词
Non-linear Hammerstein model; fractional order system; identification; polynomial non-linear state space model; output error method; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fractional systems are known to model complex dynamics with a reduced number of parameters. This paper deals with identification of discrete fractional order systems based on non-linear Hammerstein models. Such systems consist of a static non-linear block followed by a linear dynamic system. The polynomial non-linear state space equations (PNLSS) are used to represent the fractional Hammerstein system and an output error identification method is developed. Different simulations test the method fitting ability to approximate the non linear fractional system behaviour at various signal to noise ratios.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Wiener System Identification using Polynomial Non Linear State Space Model
    Lamia, Sersour
    Djamah, Tounsia
    Hammar, Karima
    Bettayeb, Maamar
    [J]. 3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT 2015), 2015,
  • [2] Parameter identification for Hammerstein nonlinear system with polynomial and state space model
    Li, Chenghao
    Li, Feng
    Cao, Qingfeng
    [J]. MEASUREMENT & CONTROL, 2023, 56 (1-2): : 327 - 336
  • [3] Modified Volterra LMS algorithm to fractional order for identification of Hammerstein non-linear system
    Chaudhary, Naveed Ishtiaq
    Aslam, Muhammad Saeed
    Raja, Muhammad Asif Zahoor
    [J]. IET SIGNAL PROCESSING, 2017, 11 (08) : 975 - 985
  • [4] Identification of a Wiener-Hammerstein system using the polynomial nonlinear state space approach
    Paduart, J.
    Lauwers, L.
    Pintelon, R.
    Schoukens, J.
    [J]. CONTROL ENGINEERING PRACTICE, 2012, 20 (11) : 1133 - 1139
  • [5] Polynomial Nonlinear Fractional State Space System Identification
    Marzougui, Soumaya
    Atitallah, Asma
    Bedoui, Saida
    Abderrahim, Kamel
    [J]. 2019 19TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA), 2019, : 286 - 291
  • [6] An evolutionary approach to non-linear polynomial system identification
    Rodríguez-Vázquez, K
    Fonseca, CM
    Fleming, PJ
    [J]. (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 1339 - 1344
  • [7] Identification of statistic equivalent polynomial non-linear system
    Qiu, Yang
    Zhang, Jinghui
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 1993, 27 (06): : 1 - 8
  • [8] State space neural networks in non-linear adaptive system identification and control
    Henriques, J
    Gil, P
    Dourado, A
    [J]. ADVANCED FUZZY-NEURAL CONTROL 2001, 2002, : 99 - 104
  • [9] Identification of MIMO Hammerstein systems with non-linear feedback
    Luo, Dapeng
    Leonessa, Alexander
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2008, 25 (03) : 367 - 392
  • [10] Non-linear State-space Model Identification from Video Data using Deep Encoders
    Beintema, Gerben, I
    Toth, Roland
    Schoukens, Maarten
    [J]. IFAC PAPERSONLINE, 2021, 54 (07): : 697 - 701