Effect of ignition position on vented hydrogen-air deflagration in a 1 m3 vessel

被引:33
|
作者
Li, Hongwei [1 ]
Rui, Shengchao [2 ,3 ]
Guo, Jin [4 ]
Sun, Xuxu [5 ]
Li, Gang [6 ]
Zhang, Jiaqing [7 ]
机构
[1] Anhui Univ Sci & Technol, Sch Chem Engn, Huainan 232001, Anhui, Peoples R China
[2] Hefei Univ Technol, Sch Civil Engn, Hefei 230009, Anhui, Peoples R China
[3] Anhui Int Joint Res Ctr Hydrogen Safety, Hefei 230009, Anhui, Peoples R China
[4] Fuzhou Univ, Coll Environm & Resources, Fuzhou 350116, Fujian, Peoples R China
[5] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230009, Anhui, Peoples R China
[6] Northeastern Univ, Fire & Explos Protect Lab, Shenyang 110004, Liaoning, Peoples R China
[7] Anhui Elect Power Res Inst, Hefei 230601, Anhui, Peoples R China
关键词
Hydrogen; Vented explosion; Pressure oscillation; Flame; Safety; EXPLOSION OVERPRESSURES; CYLINDRICAL RIG; GAS EXPLOSION; PRESSURE; GASDYNAMICS; MITIGATION; LOCATION; DUCTS; SIZE; CFD;
D O I
10.1016/j.jlp.2019.103944
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This study investigates the effect of the ignition position on vented hydrogen-air deflagration in a 1 m(3) vessel and evaluates the performance of the commercial computational fluid dynamics (CFD) code FLACS in simulating the vented explosion of hydrogen-air mixtures. First, the differences in the measured pressure-time histories for various ignition locations are presented, and the mechanisms responsible for the generation of different pressure peaks are explained, along with the flame behavior. Secondly, the CFD software FLAGS is assessed against the experimental data. The characteristic phenomena of vented explosion are observed for hydrogen-air mixtures ignited at different ignition positions, such as Helmholtz oscillation for front ignition, the interaction between external explosion and combustion inside the vessel for central ignition, and the wall effect for back-wall ignition. Flame-acoustic interaction are observed in all cases, particularly in those of front ignition and very lean hydrogen-air mixtures. The predicted flame behavior agree well with the experimental data in general while the simulated maximum overpressures are larger than the experimental values by a factor of 1.5-2, which is conservative then would lead to a safe design of explosion panels for instance. Not only the flame development during the deflagration was well-simulated for the different ignition locations, but also the correspondence between the pressure transients and flame behavior was also accurately calculated. The comparison of the predicted results with the experimental data shows the performance of FLACS to model vented mixtures of hydrogen with air ignited in a lab scale vessel. However, the experimental scale is often smaller than that used in practical scenarios, such as hydrogen refueling installations. Thus, future large-scale experiments are necessary to assess the performance of FLACS in practical use.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Effect of hydrogen concentration on vented explosion overpressures from lean hydrogen-air deflagrations
    Bauwens, C. R.
    Chao, J.
    Dorofeev, S. B.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (22) : 17599 - 17605
  • [42] Experiments on vented deflagration of stoichiometric hydrogen-methane-air mixtures: Effect of hydrogen fraction
    Duan, Zaipeng
    Guo, Jin
    Wang, Xuebiao
    Li, Jialin
    Zhang, Su
    Yang, Fuqiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (46) : 25615 - 25622
  • [43] The influence of the vent area location on hydrogen-air mixture deflagration in large-scale vessel
    Shebeko, YN
    Korolchenko, YA
    Trunev, AV
    Tsarichenko, SG
    Prostov, EN
    COMBUSTION SCIENCE AND TECHNOLOGY, 1997, 129 (1-6) : 57 - 69
  • [44] Effects of vessel height and ignition position upon explosion dynamics of hydrogen-air mixtures in vessels with low asymmetry ratios
    Wang, Lu-Qing
    Ma, Hong-Hao
    Shen, Zhao-Wu
    FUEL, 2021, 289 (289)
  • [45] The effect of ignition location on explosion venting of hydrogen-air mixtures
    Cao, Y.
    Guo, J.
    Hu, K.
    Xie, L.
    Li, B.
    SHOCK WAVES, 2017, 27 (04) : 691 - 697
  • [46] Effect of ignition position on overpressure in vented explosion of methane-air mixtures
    Wang C.
    Yang S.
    Fang Q.
    Bao Q.
    Yang, Shigang (youngshg@126.com), 2018, Explosion and Shock Waves (38): : 898 - 904
  • [47] Experimental and numerical simulation study on the effect of ignition delay time on dust explosion in the 1 m3 vessel
    Ren, Jiafan
    Chang, Chongye
    Rao, Guoning
    Bai, Chunhua
    Jing, Qi
    Peng, Xu
    Xiao, Qiuping
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 78
  • [48] Effect of Obstructed Space on the Parameters of Shock Waves from the Deflagration of Hydrogen-Air Clouds
    Sumskoi, S. I.
    Sof'in, A. S.
    Zainetdinov, S. Kh.
    Lisanov, M. V.
    Agapov, A. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 17 (02) : 419 - 424
  • [49] Effect of diffusion time on the mechanism of deflagration to detonation transition in an inhomogeneous mixture of hydrogen-air
    Saeid, Mohammad Hosein Shamsadin
    Khadem, Javad
    Emami, Sobhan
    Ghodrat, Maryam
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (55) : 23411 - 23426
  • [50] A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy
    Pang, Lei
    Wang, Chenxu
    Han, Mengxing
    Xu, Zilong
    JOURNAL OF HAZARDOUS MATERIALS, 2015, 299 : 174 - 180