THE WEAK HAAGERUP PROPERTY

被引:14
|
作者
Knudby, Soren [1 ,2 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen O, Denmark
[2] Univ Munster, Math Inst, Einsteinstr 62, D-48149 Munster, Germany
基金
新加坡国家研究基金会;
关键词
VON-NEUMANN-ALGEBRAS; HERZ-SCHUR MULTIPLIERS; SIMPLE LIE-GROUPS; FOURIER ALGEBRA; APPROXIMATION PROPERTIES; BOUNDED MULTIPLIERS; AMENABILITY; SUBGROUPS; PRODUCTS; COCYCLES;
D O I
10.1090/tran/6445
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the weak Haagerup property for locally compact groups and prove several hereditary results for the class of groups with this approximation property. The class contains a priori all weakly amenable groups and groups with the usual Haagerup property, but examples are given of groups with the weak Haagerup property which are not weakly amenable and do not have the Haagerup property. In the second part of the paper we introduce the weak Haagerup property for finite von Neumann algebras, and we prove several hereditary results here as well. Also, a discrete group has the weak Haagerup property if and only if its group von Neumann algebra does. Finally, we give an example of two II1 factors with different weak Haagerup constants.
引用
收藏
页码:3469 / 3508
页数:40
相关论文
共 50 条
  • [31] Relative Haagerup property for arbitrary von Neumann algebras
    Caspers, Martijn
    Klisse, Mario
    Skalski, Adam
    Vos, Gerrit
    Wasilewski, Mateusz
    [J]. ADVANCES IN MATHEMATICS, 2023, 421
  • [32] Maximal subgroups and von Neumann subalgebras with the Haagerup property
    Jiang, Yongle
    Skalski, Adam
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2021, 15 (03) : 849 - 892
  • [33] Hilbert modules over a planar algebra and the Haagerup property
    Brothier, Arnaud
    Jones, Vaughan F. R.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (11) : 3634 - 3644
  • [34] Splitting in orbit equivalence, treeable groups, and the Haagerup property
    Kida, Yoshikata
    [J]. HYPERBOLIC GEOMETRY AND GEOMETRIC GROUP THEORY, 2017, 73 : 167 - 214
  • [35] GROUP ACTION PRESERVING THE HAAGERUP PROPERTY OF C*-ALGEBRAS
    You, Chao
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 93 (02) : 295 - 300
  • [36] Haagerup Approximation Property for Arbitrary von Neumann Algebras
    Okayasu, Rui
    Tomatsu, Reiji
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2015, 51 (03) : 567 - 603
  • [37] Haagerup approximation property for finite von Neumann algebras
    Jolissaint, P
    [J]. JOURNAL OF OPERATOR THEORY, 2002, 48 (03) : 549 - 571
  • [38] Notes on C0-representations and the Haagerup property
    Jolissaint, Paul
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (02) : 263 - 274
  • [39] A new characterization of the Haagerup property by actions on infinite measure spaces
    Delabie, Thiebout
    Jolissaint, Paul
    Zumbrunnen, Alexandre
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (08) : 2349 - 2368
  • [40] Infinitely presented small cancellation groups have the Haagerup property
    Arzhantseva, Goulnara
    Osajda, Damian
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2015, 7 (03) : 389 - 406