Maximal subgroups and von Neumann subalgebras with the Haagerup property

被引:5
|
作者
Jiang, Yongle [1 ,2 ]
Skalski, Adam [1 ]
机构
[1] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Von Neumann algebras; Haagerup property; maximal subgroups/subalgebras; APPROXIMATION PROPERTY; RELATIVE PROPERTY; WREATH-PRODUCTS; ALGEBRAS; II1;
D O I
10.4171/GGD/614
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We initiate a study of maximal subgroups and maximal von Neumann subalgebras which have the Haagerup property. We determine maximal Haagerup subgroups inside Z(2) (sic) SL2 (Z) and obtain several explicit instances where maximal Haagerup subgroups yield maximal Haagerup subalgebras. Our techniques are on one hand based on group-theoretic considerations, and on the other on certain results on intermediate von Neumann algebras, in particular these allowing us to deduce that all the intermediate algebras for certain inclusions arise from groups or from group actions. Some remarks and examples concerning maximal non-(T) subgroups and subalgebras are also presented, and we answer two questions of Ge regarding maximal von Neumann subalgebras.
引用
收藏
页码:849 / 892
页数:44
相关论文
共 50 条