A remark on the Gauss-Bonnet theorem in Finsler geometry

被引:0
|
作者
Bidabad, Behroz [1 ]
机构
[1] Amirkabir Univ Technol, Dept Math, Tehran 15914, Iran
来源
BSG PROCEEDINGS 16 | 2009年 / 16卷
关键词
Gauss-Bonnet; mean Landsberg; Landsberg; isotropic; L-curvature; S-curvature; TANGENT BUNDLE; MANIFOLDS; CLASSIFICATION; FORMULA; SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here it is shown, every n-dimensional compact constant isotropic L-curvature space and J-curvature space (as well as Landsberg surface) with non-zero flag curvature is Riemannian. As a consequence of this work, not only known results on the Gauss-Bonnet theorem on Finsler surfaces become trivial, but it will be so for a larger class of n-dimensional Finsler manifolds as well, namely constant isotropic L-curvature and J-curvature spaces.
引用
收藏
页码:42 / 46
页数:5
相关论文
共 50 条
  • [21] A GAUSS-BONNET THEOREM FOR MOTIVIC COHOMOLOGY
    TURNER, S
    INVENTIONES MATHEMATICAE, 1990, 101 (01) : 57 - 62
  • [22] The Gauss-Bonnet theorem for vector bundles
    Bell, Denis
    JOURNAL OF GEOMETRY, 2006, 85 (1-2) : 15 - 21
  • [23] Spiraling string in Gauss-Bonnet geometry
    Atashi, Mahdi
    Fadafan, Kazem Bitaghsir
    PHYSICS LETTERS B, 2020, 800
  • [24] Hawking radiation via Gauss-Bonnet theorem
    Ovgun, A.
    Sakalli, I
    ANNALS OF PHYSICS, 2020, 413
  • [25] Graph Characteristic from the Gauss-Bonnet Theorem
    ElGhawalby, Hewayda
    Hancock, Edwin R.
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2008, 5342 : 207 - 216
  • [26] Extended Gauss-Bonnet gravities in Weyl geometry
    Jimenez, Jose Beltran
    Koivisto, Tomi S.
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (13)
  • [27] Applications of the Gauss-Bonnet theorem to gravitational lensing
    Gibbons, G. W.
    Werner, M. C.
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (23)
  • [28] Generalized Noether theorem for Gauss-Bonnet cosmology
    Dong, Han
    CHINESE JOURNAL OF PHYSICS, 2019, 60 : 573 - 580
  • [29] Gauss-Bonnet's theorem and closed Frenet frames
    Rogen, P
    GEOMETRIAE DEDICATA, 1998, 73 (03) : 295 - 315
  • [30] COVERINGS BY n-CUBES AND THE GAUSS-BONNET THEOREM
    Celakoska, Emilija
    Trencevski, Kostadin
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 : 1063 - 1072