Automated acute lymphoblastic leukaemia detection system using microscopic images

被引:8
|
作者
Sukhia, Komal Nain [1 ]
Ghafoor, Abdul [1 ]
Riaz, Muhammad Mohsin [2 ]
Iltaf, Naima [1 ]
机构
[1] NUST, Islamabad, Pakistan
[2] COMSATS Islamabad, CAST, Islamabad, Pakistan
关键词
cellular biophysics; principal component analysis; expectation-maximisation algorithm; feature extraction; medical image processing; image segmentation; image classification; blood; cancer; microscopic images; automatic approach; acute lymphoblastic leukaemia classification; white blood cell nuclei; expectation maximisation algorithm; automated acute lymphoblastic leukaemia detection system; sparse representation; CLASSIFICATION;
D O I
10.1049/iet-ipr.2018.5471
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An automatic and novel approach for acute lymphoblastic leukaemia classification is proposed. The proposed scheme is based on pre-processing and segmentation of white blood cell nuclei using expectation maximisation algorithm, feature extraction, feature selection using principal component analysis and classification using sparse representation. The accuracy of the proposed scheme significantly outperforms the existing schemes in terms of acute lymphoblastic leukaemia classification.
引用
收藏
页码:2548 / 2553
页数:6
相关论文
共 50 条
  • [41] Optimized Support Vector Machine Using Whale Optimization Algorithm for Acute Lymphoblastic Leukemia Detection from Microscopic Blood Smear Images
    Saikia R.
    Sarma A.
    Shuleenda Devi S.
    SN Computer Science, 5 (5)
  • [42] A new acute leukaemia-automated classification system
    Agaian, Sos
    Madhukar, Monica
    Chronopoulos, Anthony T.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (03): : 303 - 314
  • [43] Computer Aided Diagnostic System for Detection of Leukemia using Microscopic Images
    Rawat, Jyoti
    Singh, Annapurna
    Bhadauria, H. S.
    Virmani, Jitendra
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ECO-FRIENDLY COMPUTING AND COMMUNICATION SYSTEMS, 2015, 70 : 748 - 756
  • [44] Automatic detection of acute lymphoblastic leukaemia based on extending the multifractal features
    Abbasi, Mohamadreza
    Kermani, Saeed
    Tajebib, Ardeshir
    Amin, Morteza Moradi
    Abbasi, Manije
    IET IMAGE PROCESSING, 2020, 14 (01) : 132 - 137
  • [45] Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia
    Coustan-Smith, E
    Behm, FG
    Sanchez, J
    Boyett, JM
    Hancock, ML
    Raimondi, SC
    Rubnitz, JE
    Rivera, GK
    Sandlund, JT
    Pui, CH
    Campana, D
    LANCET, 1998, 351 (9102): : 550 - 554
  • [46] Deciphering IGH rearrangement complexity and detection strategies in acute lymphoblastic leukaemia
    Thomson, Ashlee
    Rehn, Jacqueline
    Yeung, David
    Breen, James
    White, Deborah
    NPJ PRECISION ONCOLOGY, 2025, 9 (01)
  • [47] Automated Malaria Parasite and there Stage Detection in Microscopic Blood Images
    Charpe, Kshipra C.
    Bairagi, V. K.
    PROCEEDINGS OF 2015 IEEE 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO), 2015,
  • [48] Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers
    Rawat, Jyoti
    Singh, Annapurna
    Bhadauria, H. S.
    Virmani, Jitendra
    Devgun, J. S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (18) : 19057 - 19085
  • [49] Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers
    Jyoti Rawat
    Annapurna Singh
    H. S. Bhadauria
    Jitendra Virmani
    J. S. Devgun
    Multimedia Tools and Applications, 2017, 76 : 19057 - 19085
  • [50] Recognition of acute lymphoblastic leukemia and lymphocytes cell subtypes in microscopic images using random forest classifier
    Pouria Mirmohammadi
    Marjan Ameri
    Ahmad Shalbaf
    Physical and Engineering Sciences in Medicine, 2021, 44 : 433 - 441