Automated acute lymphoblastic leukaemia detection system using microscopic images

被引:8
|
作者
Sukhia, Komal Nain [1 ]
Ghafoor, Abdul [1 ]
Riaz, Muhammad Mohsin [2 ]
Iltaf, Naima [1 ]
机构
[1] NUST, Islamabad, Pakistan
[2] COMSATS Islamabad, CAST, Islamabad, Pakistan
关键词
cellular biophysics; principal component analysis; expectation-maximisation algorithm; feature extraction; medical image processing; image segmentation; image classification; blood; cancer; microscopic images; automatic approach; acute lymphoblastic leukaemia classification; white blood cell nuclei; expectation maximisation algorithm; automated acute lymphoblastic leukaemia detection system; sparse representation; CLASSIFICATION;
D O I
10.1049/iet-ipr.2018.5471
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An automatic and novel approach for acute lymphoblastic leukaemia classification is proposed. The proposed scheme is based on pre-processing and segmentation of white blood cell nuclei using expectation maximisation algorithm, feature extraction, feature selection using principal component analysis and classification using sparse representation. The accuracy of the proposed scheme significantly outperforms the existing schemes in terms of acute lymphoblastic leukaemia classification.
引用
收藏
页码:2548 / 2553
页数:6
相关论文
共 50 条
  • [21] Acute Lymphoblastic Leukemia Classification from Microscopic Images Using Convolutional Neural Networks
    Prellberg, Jonas
    Kramer, Oliver
    ISBI 2019 C-NMC CHALLENGE: CLASSIFICATION IN CANCER CELL IMAGING, 2019, : 53 - 61
  • [22] Acute Lymphoblastic Leukaemia and Central Nervous System Sequelae
    Sheridan, M.
    Loughborough, W.
    BRITISH JOURNAL OF HAEMATOLOGY, 2018, 181 : 158 - 159
  • [23] Microscopic Image Classification Using DCT for the Detection of Acute Lymphoblastic Leukemia (ALL)
    Mishra, Sonali
    Sharma, Lokesh
    Majhi, Bansidhar
    Sa, Pankaj Kumar
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION AND IMAGE PROCESSING, CVIP 2016, VOL 1, 2017, 459 : 171 - 180
  • [24] A convolutional neural network-based learning approach to acute lymphoblastic leukaemia detection with automated feature extraction
    Anwar, Shamama
    Alam, Afrin
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (12) : 3113 - 3121
  • [25] Detection of the Philadelphia chromosome in the iris of a child with acute lymphoblastic leukaemia
    Buggage, RR
    Myers-Powell, B
    McManaway, J
    Shen, D
    Robinson, MR
    Chan, CC
    HISTOPATHOLOGY, 2005, 46 (03) : 350 - 352
  • [26] Molecular detection of acute lymphoblastic leukaemia in boys with testicular relapse
    Lal, A
    Kwan, E
    Al Mahr, M
    Zhou, L
    Ferrara, D
    Tobias, V
    Hughes, DO
    Haber, M
    Norris, MD
    Marshall, GM
    JOURNAL OF CLINICAL PATHOLOGY-MOLECULAR PATHOLOGY, 1998, 51 (05): : 277 - 281
  • [27] The detection and significance of chromosomal abnormalities in childhood acute lymphoblastic leukaemia
    Harrison, CJ
    BLOOD REVIEWS, 2001, 15 (01) : 49 - 59
  • [28] Automated and unsupervised detection of malarial parasites in microscopic images
    Purwar, Yashasvi
    Shah, Sirish L.
    Clarke, Gwen
    Almugairi, Areej
    Muehlenbachs, Atis
    MALARIA JOURNAL, 2011, 10
  • [29] Automated and unsupervised detection of malarial parasites in microscopic images
    Yashasvi Purwar
    Sirish L Shah
    Gwen Clarke
    Areej Almugairi
    Atis Muehlenbachs
    Malaria Journal, 10
  • [30] Automatic Detection of White Blood Cells from Microscopic Images for Malignancy Classification of Acute Lymphoblastic Leukemia
    Rahman, Ashikur
    Hasan, Md. Mehedi
    2018 INTERNATIONAL CONFERENCE ON INNOVATION IN ENGINEERING AND TECHNOLOGY (ICIET), 2018,