Automated acute lymphoblastic leukaemia detection system using microscopic images

被引:8
|
作者
Sukhia, Komal Nain [1 ]
Ghafoor, Abdul [1 ]
Riaz, Muhammad Mohsin [2 ]
Iltaf, Naima [1 ]
机构
[1] NUST, Islamabad, Pakistan
[2] COMSATS Islamabad, CAST, Islamabad, Pakistan
关键词
cellular biophysics; principal component analysis; expectation-maximisation algorithm; feature extraction; medical image processing; image segmentation; image classification; blood; cancer; microscopic images; automatic approach; acute lymphoblastic leukaemia classification; white blood cell nuclei; expectation maximisation algorithm; automated acute lymphoblastic leukaemia detection system; sparse representation; CLASSIFICATION;
D O I
10.1049/iet-ipr.2018.5471
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An automatic and novel approach for acute lymphoblastic leukaemia classification is proposed. The proposed scheme is based on pre-processing and segmentation of white blood cell nuclei using expectation maximisation algorithm, feature extraction, feature selection using principal component analysis and classification using sparse representation. The accuracy of the proposed scheme significantly outperforms the existing schemes in terms of acute lymphoblastic leukaemia classification.
引用
收藏
页码:2548 / 2553
页数:6
相关论文
共 50 条
  • [1] Automated Leukaemia Detection using Microscopic Images
    Patel, Nimesh
    Mishra, Ashutosh
    SECOND INTERNATIONAL SYMPOSIUM ON COMPUTER VISION AND THE INTERNET (VISIONNET'15), 2015, 58 : 635 - 642
  • [2] Automated morphometric classification of acute lymphoblastic leukaemia in blood microscopic images using an ensemble of classifiers
    Mohapatra, Subrajeet
    Patra, Dipti
    Satpathy, Sanghamitra
    Jena, Rabindra Kumar
    Sethy, Sudha
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2016, 4 (01): : 3 - 16
  • [3] Automated Detection of Acute Lymphoblastic Leukemia From Microscopic Images Based on Human Visual Perception
    Bodzas, Alexandra
    Kodytek, Pavel
    Zidek, Jan
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [4] Detection of acute lymphoblastic leukaemia using extreme learning machine based on deep features from microscopic blood cell images
    Chand, Sunita
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2024, 46 (04) : 263 - 285
  • [5] Automated Screening System for Acute Myelogenous Leukemia Detection in Blood Microscopic Images
    Agaian, Sos
    Madhukar, Monica
    Chronopoulos, Anthony T.
    IEEE SYSTEMS JOURNAL, 2014, 8 (03): : 995 - 1004
  • [6] Automated Detection of B Cell and T Cell Acute Lymphoblastic Leukaemia Using Deep Learning
    Anilkumar, K. K.
    Manoj, V. J.
    Sagi, T. M.
    IRBM, 2022, 43 (05) : 405 - 413
  • [7] Computerized Counting-Based System for Acute Lymphoblastic Leukemia Detection in Microscopic Blood Images
    Ben-Suliman, Karima
    Krzyzak, Adam
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 : 167 - 178
  • [8] A decision support system for Acute Leukaemia classification based on digital microscopic images
    Negm, Ahmed S.
    Hassan, Osama A.
    Kandil, Ahmed H.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (04) : 2319 - 2332
  • [9] An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images
    Neoh, Siew Chin
    Srisukkham, Worawut
    Zhang, Li
    Todryk, Stephen
    Greystoke, Brigit
    Lim, Chee Peng
    Hossain, Mohammed Alamgir
    Aslam, Nauman
    SCIENTIFIC REPORTS, 2015, 5
  • [10] An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images
    Siew Chin Neoh
    Worawut Srisukkham
    Li Zhang
    Stephen Todryk
    Brigit Greystoke
    Chee Peng Lim
    Mohammed Alamgir Hossain
    Nauman Aslam
    Scientific Reports, 5