CMA-ES with Surrogate Model Adapting to Fitness Landscape

被引:1
|
作者
Tsukada, Kento [1 ]
Hasegawa, Taku [1 ]
Mori, Naoki [1 ]
Matsumoto, Keinosuke [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Engn, 1-1 Gakuencho, Sakai, Osaka 5998531, Japan
关键词
Evolutionary computation; Support vector machine; Continuous optimization;
D O I
10.1007/978-3-319-49049-6_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the most important issues for evolutionary computation (EC) is to consider the number of fitness evaluations. In order to reduce the number of fitness evaluations, we have proposed the novel surrogate model called Rank Space Estimation (RSE) model and the surrogate-assisted EC with RSE model called the Fitness Landscape Learning Evolutionary Computation (FLLEC). This paper presents a novel CMA-ES with RSE model for continuous optimization problems and a scaling method for input data to surrogate model.
引用
收藏
页码:417 / 429
页数:13
相关论文
共 50 条
  • [31] A New Step-Size Adaptation Rule for CMA-ES Based on the Population Midpoint Fitness
    Warchulski, Eryk
    Arabas, Jaroslaw
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 825 - 831
  • [32] Adapting the population size in CMA-ES using nearest-better clustering method for multimodal optimization
    Nguyen, Duc Manh
    Applied Soft Computing, 2024, 167
  • [33] Improving the Differential Evolution Strategy by coupling it with CMA-ES
    Warchulski, Eryk
    Arabas, Jaroslaw
    Biedrzycki, Rafal
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 407 - 410
  • [34] Solving Satisfiability in Fuzzy Logics by Mixing CMA-ES
    Brys, Tim
    Drugan, Madalina M.
    Bosman, Peter A. N.
    De Cock, Martine
    Nowe, Ann
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 1125 - 1132
  • [35] Identification of the isotherm function in chromatography using CMA-ES
    Jebalia, M.
    Auger, A.
    Schoenauer, M.
    James, F.
    Postel, M.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 4289 - +
  • [36] Investigating the Local-Meta-Model CMA-ES for Large Population Sizes
    Bouzarkouna, Zyed
    Auger, Anne
    Ding, Didier Yu
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, PT I, PROCEEDINGS, 2010, 6024 : 402 - +
  • [37] Reducing the Space-Time Complexity of the CMA-ES
    Knight, James N.
    Lunacek, Monte
    GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 658 - 665
  • [38] Optimization of microwave circuit parameters by CMA-ES method
    Hayashi, Kosuke
    Khige, Koichi
    IEICE COMMUNICATIONS EXPRESS, 2021, 10 (09): : 681 - 687
  • [39] What Does the Evolution Path Learn in CMA-ES?
    Li, Zhenhua
    Zhang, Qingfu
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV, 2016, 9921 : 751 - 760
  • [40] Exploring optimal topology of thermal cloaks by CMA-ES
    Fujii, Garuda
    Akimoto, Youhei
    Takahashi, Masayuki
    APPLIED PHYSICS LETTERS, 2018, 112 (06)