CMA-ES with Surrogate Model Adapting to Fitness Landscape

被引:1
|
作者
Tsukada, Kento [1 ]
Hasegawa, Taku [1 ]
Mori, Naoki [1 ]
Matsumoto, Keinosuke [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Engn, 1-1 Gakuencho, Sakai, Osaka 5998531, Japan
关键词
Evolutionary computation; Support vector machine; Continuous optimization;
D O I
10.1007/978-3-319-49049-6_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the most important issues for evolutionary computation (EC) is to consider the number of fitness evaluations. In order to reduce the number of fitness evaluations, we have proposed the novel surrogate model called Rank Space Estimation (RSE) model and the surrogate-assisted EC with RSE model called the Fitness Landscape Learning Evolutionary Computation (FLLEC). This paper presents a novel CMA-ES with RSE model for continuous optimization problems and a scaling method for input data to surrogate model.
引用
收藏
页码:417 / 429
页数:13
相关论文
共 50 条
  • [21] CMA-ES with Learning Rate Adaptation: Can CMA-ES with Default Population Size Solve Multimodal and Noisy Problems?
    Nomura, Masahiro
    Akimoto, Youhei
    Ono, Isao
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 839 - 847
  • [22] EFFECTIVE AND STABLE NEURON MODEL OPTIMIZATION BASED ON AGGREGATED CMA-ES
    Xu, Han
    Shinozaki, Takahiro
    Kobayashi, Ryota
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1264 - 1268
  • [23] Local-Meta-Model CMA-ES for Partially Separable Functions
    Bouzarkouna, Zyed
    Auger, Anne
    Ding, Didier Yu
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 869 - 876
  • [24] Acoustic topology optimisation using CMA-ES
    Ramamoorthy, V. T.
    Ozcan, E.
    Parkes, A. J.
    Sreekumar, A.
    Jaouen, L.
    Becot, F. X.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2020) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2020), 2020, : 511 - 522
  • [25] The lens design using the CMA-ES algorithm
    Nagata, Y
    GENETIC AND EVOLUTIONARY COMPUTATION GECCO 2004 , PT 2, PROCEEDINGS, 2004, 3103 : 1189 - 1200
  • [26] Warm Starting CMA-ES for Hyperparameter Optimization
    Nomura, Masahiro
    Watanabe, Shuhei
    Akimoto, Youhei
    Ozaki, Yoshihiko
    Onishi, Masaki
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 9188 - 9196
  • [27] Hybrid of PSO and CMA-ES for Global Optimization
    Xu, Peilan
    Luo, Wenjian
    Lin, Xin
    Qiao, Yingying
    Zhu, Tao
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 27 - 33
  • [28] An Asynchronous Implementation of the Limited Memory CMA-ES
    Arkhipov, Viktor
    Buzdalov, Maxim
    Shalyto, Anatoly
    2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, : 707 - 712
  • [29] A CMA-ES with Multiplicative Covariance Matrix Updates
    Krause, Oswin
    Glasmachers, Tobias
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 281 - 288
  • [30] Sequential Sampling for Noisy Optimisation with CMA-ES
    Groves, Matthew
    Branke, Juergen
    GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 1023 - 1030