CMA-ES with Surrogate Model Adapting to Fitness Landscape

被引:1
|
作者
Tsukada, Kento [1 ]
Hasegawa, Taku [1 ]
Mori, Naoki [1 ]
Matsumoto, Keinosuke [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Engn, 1-1 Gakuencho, Sakai, Osaka 5998531, Japan
关键词
Evolutionary computation; Support vector machine; Continuous optimization;
D O I
10.1007/978-3-319-49049-6_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the most important issues for evolutionary computation (EC) is to consider the number of fitness evaluations. In order to reduce the number of fitness evaluations, we have proposed the novel surrogate model called Rank Space Estimation (RSE) model and the surrogate-assisted EC with RSE model called the Fitness Landscape Learning Evolutionary Computation (FLLEC). This paper presents a novel CMA-ES with RSE model for continuous optimization problems and a scaling method for input data to surrogate model.
引用
收藏
页码:417 / 429
页数:13
相关论文
共 50 条
  • [1] A Global Surrogate Assisted CMA-ES
    Hansen, Nikolaus
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 664 - 672
  • [2] Analysis of Scaling for Fitness Landscape Learning Evolutionary Computation based on CMA-ES
    Mori, Naoki
    Hasegawa, Taku
    Tsukada, Kento
    Matsumoto, Keinosuke
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 173 - 174
  • [3] Doubly Trained Evolution Control for the Surrogate CMA-ES
    Pitra, Zbynek
    Bajer, Lukas
    Holena, Martin
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV, 2016, 9921 : 59 - 68
  • [4] Model complex control CMA-ES
    Tong, Xin
    Yuan, Bo
    Li, Bin
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 50
  • [5] Intensive Surrogate Model Exploitation in Self-adaptive Surrogate-assisted CMA-ES (saACM-ES)
    Loshchilov, Ilya
    Schoenauer, Marc
    Sebag, Michele
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 439 - 446
  • [6] Multiobjective optimization with a quadratic surrogate-assisted CMA-ES
    Gharafi, Mohamed
    Hansen, Nikolaus
    Brockhoff, Dimo
    Le Riche, Rodolphe
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 652 - 660
  • [7] Gaussian Process Surrogate Models for the CMA-ES (Extended Abstract)
    Bajer, Lukas
    Pitra, Zbynek
    Repicky, Jakub
    Holena, Martin
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 17 - 18
  • [8] The Importance of Landscape Features for Performance Prediction of Modular CMA-ES Variants
    Kostovska, Ana
    Vermetten, Diederick
    Dzeroski, Saso
    Doerr, Carola
    Korosec, Peter
    Eftimov, Tome
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 648 - 656
  • [9] Augmented Lagrangian, penalty techniques and surrogate modeling for constrained optimization with CMA-ES
    Dufosse, Paul
    Hansen, Nikolaus
    PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'21), 2021, : 519 - 527
  • [10] PSA-CMA-ES: CMA-ES with Population Size Adaptation
    Nishida, Kouhei
    Akimoto, Youhei
    GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 865 - 872