Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

被引:35
|
作者
Li, M. M.
Yang, C. C. [1 ]
Wang, C. C.
Wen, Z.
Zhu, Y. F.
Zhao, M.
Li, J. C.
Zheng, W. T.
Lian, J. S.
Jiang, Q. [1 ]
机构
[1] Jilin Univ, Key Lab Automobile Mat, Minist Educ, Changchun 130022, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
ELECTROCHEMICAL PROPERTIES; SURFACE MODIFICATION; NANOPOROUS METALS; EXCHANGE CURRENT; ALLOY; COBALT; MICROENCAPSULATION; MICROSTRUCTURE; FABRICATION; CHALLENGES;
D O I
10.1038/srep27601
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world's dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials-hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g(-1), which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] HYDROGEN STORAGE ALLOYS FOR NICKEL METAL HYDRIDE BATTERY
    SAKAI, T
    MIYAMURA, H
    KURIYAMA, N
    ISHIKAWA, H
    UEHARA, I
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 1994, 183 : 333 - 346
  • [42] Electrochemical Properties of Nb-Substituted Zr-Ti-Ni Hydrogen Storage Alloy Negative Electrodes for Nickel-Metal Hydride Batteries
    Matsuyama, Akihiro
    Takito, Hironori
    Kozuka, Takumi
    Inoue, Hiroshi
    METALS, 2018, 8 (07):
  • [43] The development of hydrogen storage electrode alloys for nickel hydride batteries
    Hong, K
    JOURNAL OF POWER SOURCES, 2001, 96 (01) : 85 - 89
  • [44] The development of hydrogen storage alloys and the progress of nickel hydride batteries
    Hong, KC
    JOURNAL OF ALLOYS AND COMPOUNDS, 2001, 321 (02) : 307 - 313
  • [45] Development of a recycling process for nickel-metal hydride batteries
    Mueller, Tobias
    Friedrich, Bernd
    JOURNAL OF POWER SOURCES, 2006, 158 (02) : 1498 - 1509
  • [46] Bipolar nickel-metal hydride batteries for aerospace applications
    Cole, JH
    Eskra, M
    Klein, M
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2000, 15 (01) : 39 - 45
  • [47] High capacity technology of nickel-metal hydride batteries
    Nishio, K
    Itoh, Y
    MACROMOLECULAR SYMPOSIA, 2000, 156 : 203 - 211
  • [48] Synthesis of nanoscale CoO particles and their effect on the positive electrodes of nickel-metal hydride batteries
    Wu, J. B.
    Tu, J. P.
    Wang, X. L.
    Zhang, W. K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (05) : 606 - 610
  • [49] Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys
    Yasuoka, Shigekazu
    Magari, Yoshifumi
    Murata, Tetsuyuki
    Tanaka, Tadayoshi
    Ishida, Jun
    Nakamura, Hiroshi
    Nohma, Toshiyuki
    Kihara, Masaru
    Baba, Yoshitaka
    Teraoka, Hirohito
    JOURNAL OF POWER SOURCES, 2006, 156 (02) : 662 - 666
  • [50] Development of high performance nickel-metal hydride batteries
    Yonezu, I
    ELECTROCHEMISTRY, 2004, 72 (09) : 647 - 651