The present study describes the application of particle image velocimetry (PIV) to investigate the compressible flow in the wake of a two-dimensional blunt base at a freestream Mach number M-infinity = 2. The first part of the study addresses specific issues related to the application of PIV to supersonic wind tunnel flows, such as the seeding particle flow-tracing fidelity and the measurement spatial resolution. The seeding particle response is assessed through a planar oblique shock wave experiment. The measurement spatial resolution is enhanced by means of an advanced image-interrogation algorithm. In the second part, the experimental results are presented. The PIV measurements yield the spatial distribution of mean velocity and turbulence. The mean velocity distribution clearly reveals the main flow features such as expansion fans, separated shear layers, flow recirculation, reattachment, recompression and wake development. The turbulence distribution shows the growth of turbulent fluctuations in the separated shear layers up to the reattachment location. Increased velocity fluctuations are also present downstream of reattachment outside of the wake due to unsteady flow reattachment and recompression. The instantaneous velocity field is analyzed seeking coherent flow structures in the redeveloping wake. The instantaneous planar velocity and vorticity measurements return evidence of large-scale turbulent structures detected as spatially coherent vorticity fluctuations. The velocity pattern consistently shows large masses of fluid in vortical motion. The overall instantaneous wake flow is organized as a double row of counter-rotating structures. The single structures show vorticity contours of roughly elliptical shape in agreement with previous studies based on spatial correlation of planar light scattering. Peak vorticity is found to be five times higher than the mean vorticity value, suggesting that wake turbulence is dominated by the activity of large-scale structures. The unsteady behavior of the reattachment phenomenon is studied. Based on the instantaneous flow topology, the reattachment is observed to fluctuate mostly in the streamwise direction suggesting that the unsteady separation is dominated by a pumping like motion.