A vortex particle method for two-dimensional compressible flow

被引:55
|
作者
Eldredge, JD [1 ]
Colonius, T [1 ]
Leonard, A [1 ]
机构
[1] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
vortex methods; Lagrangian methods; compressible flow; aeroacoustics;
D O I
10.1006/jcph.2002.7060
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A vortex particle method is developed for simulating two-dimensional, unsteady compressible (low. The method uses the Helmholtz decomposition of the velocity field to separately treat the irrotational and solenoidal portions of the Now, and the particles are allowed to change volume to conserve mass. In addition to having vorticity and dilatation properties, the particles also carry density, enthalpy, and entropy. The resulting evolution equations contain terms that are computed with techniques used in some incompressible methods. Truncation of unbounded domains via a nonreflecting boundary condition is also considered. The fast multipole method is adapted to compressible particles in order to make the method computationally efficient. The new method is applied to several problems, including sound generation by corotating vortices and generation of vorticity by baroclinic torque. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:371 / 399
页数:29
相关论文
共 50 条