Non-Abelian Parton Fractional Quantum Hall Effect in Multilayer Graphene

被引:53
|
作者
Wu, Ying-Hai [1 ]
Shi, Tao [1 ]
Jain, Jainendra K. [2 ]
机构
[1] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[2] Penn State Univ, Dept Phys, Davey Lab 104, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Bilayer graphene; trilayer graphene; fractional quantum Hall effect; non-Abelian anyons; BILAYER GRAPHENE; MONOPOLE HARMONICS; MAJORANA FERMIONS; NEUTRAL-MODES; LANDAU-LEVEL; STATES; PARTICLE; COMPUTATION; SYMMETRIES; PHASES;
D O I
10.1021/acs.nanolett.7b01080
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The current proposals for producing non-Abelian anyons and Majorana particles, which are neither fermions nor bosons, are primarily based on the realization of topological superconductivity in two dimensions. We show theoretically that the unique Landau level structure of bilayer graphene provides a new possible avenue for achieving such exotic particles. Specifically, we demonstrate the feasibility of a "parton" fractional quantum Hall (FQH) state, which supports non-Abelian particles without the usual topological superconductivity. Furthermore, we advance this state as the fundamental explanation of the puzzling 1/2 FQH effect observed in bilayer graphene [Kim et al. Nano Lett. 2015, 15, 7445] and predict that it will also occur in trilayer graphene. We indicate experimental signatures that differentiate the parton state from other candidate non-Abelian FQH states and predict that a transverse electric field can induce a. topological quantum phase transition between two distinct non-Abelian FQH states.
引用
收藏
页码:4643 / 4647
页数:5
相关论文
共 50 条
  • [41] Quantum groups and non-Abelian braiding in quantum Hall systems
    Slingerland, JK
    Bais, FA
    NUCLEAR PHYSICS B, 2001, 612 (03) : 229 - 290
  • [42] Matrix model for non-Abelian quantum Hall states
    Dorey, Nick
    Tong, David
    Turner, Carl
    PHYSICAL REVIEW B, 2016, 94 (08)
  • [43] Partition functions of non-Abelian quantum Hall states
    Cappelli, Andrea
    Viola, Giovanni
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (07)
  • [44] From fractional Chern insulators to Abelian and non-Abelian fractional quantum Hall states: Adiabatic continuity and orbital entanglement spectrum
    Liu, Zhao
    Bergholtz, Emil J.
    PHYSICAL REVIEW B, 2013, 87 (03)
  • [45] Non-Abelian twist to integer quantum Hall states
    Lopes, Pedro L. S.
    Quito, Victor L.
    Han, Bo
    Teo, Jeffrey C. Y.
    PHYSICAL REVIEW B, 2019, 100 (08)
  • [46] Projective construction of non-Abelian quantum Hall liquids
    Wen, XG
    PHYSICAL REVIEW B, 1999, 60 (12) : 8827 - 8838
  • [47] Exclusion statistics for non-Abelian quantum Hall states
    Schoutens, K
    PHYSICAL REVIEW LETTERS, 1998, 81 (09) : 1929 - 1932
  • [48] Non-Abelian fermionization and the landscape of quantum Hall phases
    Goldman, Hart
    Sohal, Ramanjit
    Fradkin, Eduardo
    PHYSICAL REVIEW B, 2020, 102 (19)
  • [49] Quantum Hall effects in a non-Abelian honeycomb lattice
    Li, Ling
    Hao, Ningning
    Liu, Guocai
    Bai, Zhiming
    Li, Zai-Dong
    Chen, Shu
    Liu, W. M.
    PHYSICAL REVIEW A, 2015, 92 (06)
  • [50] A non-Abelian parton state for the ν = 2
    Balram, Ajit Coimbatore
    SCIPOST PHYSICS, 2021, 10 (04):