Non-Abelian Parton Fractional Quantum Hall Effect in Multilayer Graphene

被引:50
|
作者
Wu, Ying-Hai [1 ]
Shi, Tao [1 ]
Jain, Jainendra K. [2 ]
机构
[1] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[2] Penn State Univ, Dept Phys, Davey Lab 104, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Bilayer graphene; trilayer graphene; fractional quantum Hall effect; non-Abelian anyons; BILAYER GRAPHENE; MONOPOLE HARMONICS; MAJORANA FERMIONS; NEUTRAL-MODES; LANDAU-LEVEL; STATES; PARTICLE; COMPUTATION; SYMMETRIES; PHASES;
D O I
10.1021/acs.nanolett.7b01080
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The current proposals for producing non-Abelian anyons and Majorana particles, which are neither fermions nor bosons, are primarily based on the realization of topological superconductivity in two dimensions. We show theoretically that the unique Landau level structure of bilayer graphene provides a new possible avenue for achieving such exotic particles. Specifically, we demonstrate the feasibility of a "parton" fractional quantum Hall (FQH) state, which supports non-Abelian particles without the usual topological superconductivity. Furthermore, we advance this state as the fundamental explanation of the puzzling 1/2 FQH effect observed in bilayer graphene [Kim et al. Nano Lett. 2015, 15, 7445] and predict that it will also occur in trilayer graphene. We indicate experimental signatures that differentiate the parton state from other candidate non-Abelian FQH states and predict that a transverse electric field can induce a. topological quantum phase transition between two distinct non-Abelian FQH states.
引用
收藏
页码:4643 / 4647
页数:5
相关论文
共 50 条
  • [21] Fractional quantum anomalous Hall effect in multilayer graphene
    Lu, Zhengguang
    Han, Tonghang
    Yao, Yuxuan
    Reddy, Aidan P.
    Yang, Jixiang
    Seo, Junseok
    Watanabe, Kenji
    Taniguchi, Takashi
    Fu, Liang
    Ju, Long
    NATURE, 2024, 626 (8000) : 759 - 764
  • [22] Effective Abelian theory from a non-Abelian topological order in the ν=2/5 fractional quantum Hall effect
    Yang, Bo
    Wu, Ying-Hai
    Papic, Zlatko
    PHYSICAL REVIEW B, 2019, 100 (24)
  • [23] Non-Abelian Quantum Hall Effect in Topological Flat Bands
    Wang, Yi-Fei
    Yao, Hong
    Gu, Zheng-Cheng
    Gong, Chang-De
    Sheng, D. N.
    PHYSICAL REVIEW LETTERS, 2012, 108 (12)
  • [24] Properties of Non-Abelian Fractional Quantum Hall States at Filling ν=k/r
    Bernevig, B. Andrei
    Haldane, F. D. M.
    PHYSICAL REVIEW LETTERS, 2008, 101 (24)
  • [25] Exotic Non-Abelian Topological Defects in Lattice Fractional Quantum Hall States
    Liu, Zhao
    Moeller, Gunnar
    Bergholtz, Emil J.
    PHYSICAL REVIEW LETTERS, 2017, 119 (10)
  • [26] Exotic non-Abelian anyons from conventional fractional quantum Hall states
    Clarke, David J.
    Alicea, Jason
    Shtengel, Kirill
    NATURE COMMUNICATIONS, 2013, 4
  • [27] Scaling and non-Abelian signature in fractional quantum Hall quasiparticle tunneling amplitude
    Hu, Zi-Xiang
    Lee, Ki H.
    Rezayi, Edward H.
    Wan, Xin
    Yang, Kun
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [28] Exotic non-Abelian anyons from conventional fractional quantum Hall states
    David J. Clarke
    Jason Alicea
    Kirill Shtengel
    Nature Communications, 4
  • [29] Chern-number matrix of the non-Abelian spin-singlet fractional quantum Hall effect
    Zeng, Tian-Sheng
    Zhu, W.
    PHYSICAL REVIEW B, 2022, 105 (12)
  • [30] The fractional quantum Hall effect at filling factor 5/2: numerically searching for non-abelian anyons
    Peterson, Michael R.
    IUPAP C20 CONFERENCE ON COMPUTATIONAL PHYSICS (CCP 2011), 2012, 402