3D SaccadeNet: A Single-Shot 3D Object Detector for LiDAR Point Clouds

被引:0
|
作者
Wen, Lihua [1 ]
Vo, Xuan-Thuy [1 ]
Jo, Kang-Hyun [1 ]
机构
[1] Univ Ulsan, Grad Sch Elect Engn, Ulsan 44610, South Korea
关键词
Single-shot; 3D object detection; Saccade; Point clouds; Anchor free;
D O I
10.23919/iccas50221.2020.9268367
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
3D object detection is an essential step towards holistic scene understanding. Currently, the existing 3D object detection methods focus on certain object's areas once and predict the object's locations. The way does not conform to the habit of human observing targets. Hence, this work proposes a fast and accurate object detector called 3D SaccadeNet, which regards one 3D object as nine keypoints. In the training process, the corner loss, center loss, and classification loss are computed. However, the center is only used to predict a 3D object. Performed experiments on the KITTI dataset show that the proposed method is highly efficient and effective, and the 3D object detection reaches (91.18%, 82.80%, 79.90%).
引用
收藏
页码:1225 / 1230
页数:6
相关论文
共 50 条
  • [41] Transformer for 3D Point Clouds
    Wang, Jiayun
    Chakraborty, Rudrasis
    Yu, Stella X.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (08) : 4419 - 4431
  • [42] A Comparative Study of Object Classification Methods Using 3D Zernike Moment on 3D Point Clouds
    Ozbay, Erdal
    Cinar, Ahmet
    TRAITEMENT DU SIGNAL, 2019, 36 (06) : 549 - 555
  • [43] Integration of 3D Point Clouds
    不详
    BAUINGENIEUR, 2017, 92 : A13 - A13
  • [44] 2D&3DHNet for 3D Object Classification in LiDAR Point Cloud
    Song, Wei
    Li, Dechao
    Sun, Su
    Zhang, Lingfeng
    Xin, Yu
    Sung, Yunsick
    Choi, Ryong
    REMOTE SENSING, 2022, 14 (13)
  • [45] B-SHOT: a binary 3D feature descriptor for fast Keypoint matching on 3D point clouds
    Sai Manoj Prakhya
    Bingbing Liu
    Weisi Lin
    Vinit Jakhetiya
    Sharath Chandra Guntuku
    Autonomous Robots, 2017, 41 : 1501 - 1520
  • [46] Scale invariant point feature (SIPF) for 3D point clouds and 3D multi-scale object detection
    Lin, Baowei
    Wang, Fasheng
    Zhao, Fangda
    Sun, Yi
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (05): : 1209 - 1224
  • [47] B-SHOT: a binary 3D feature descriptor for fast Keypoint matching on 3D point clouds
    Prakhya, Sai Manoj
    Liu, Bingbing
    Lin, Weisi
    Jakhetiya, Vinit
    Guntuku, Sharath Chandra
    AUTONOMOUS ROBOTS, 2017, 41 (07) : 1501 - 1520
  • [48] Aggregate and Excitate Sparse Spatial Feature: Single-Stage 3D Object Detector from Point Clouds
    Lu, Bin
    Sun, Yang
    Yang, Zhenyu
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2024, 36 (05): : 721 - 733
  • [49] DAPS3D: Domain Adaptive Projective Segmentation of 3D LiDAR Point Clouds
    Klokov, Alexey A.
    Pak, Di Un
    Khorin, Aleksandr
    Yudin, Dmitry A.
    Kochiev, Leon
    Luchinskiy, Vladimir D.
    Bezuglyj, Vitaly D.
    IEEE ACCESS, 2023, 11 : 79341 - 79356
  • [50] CNN-based 3D object classification using Hough space of LiDAR point clouds
    Song, Wei
    Zhang, Lingfeng
    Tian, Yifei
    Fong, Simon
    Li, Jinming
    Gozho, Amanda
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2020, 10 (01)