3D SaccadeNet: A Single-Shot 3D Object Detector for LiDAR Point Clouds

被引:0
|
作者
Wen, Lihua [1 ]
Vo, Xuan-Thuy [1 ]
Jo, Kang-Hyun [1 ]
机构
[1] Univ Ulsan, Grad Sch Elect Engn, Ulsan 44610, South Korea
关键词
Single-shot; 3D object detection; Saccade; Point clouds; Anchor free;
D O I
10.23919/iccas50221.2020.9268367
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
3D object detection is an essential step towards holistic scene understanding. Currently, the existing 3D object detection methods focus on certain object's areas once and predict the object's locations. The way does not conform to the habit of human observing targets. Hence, this work proposes a fast and accurate object detector called 3D SaccadeNet, which regards one 3D object as nine keypoints. In the training process, the corner loss, center loss, and classification loss are computed. However, the center is only used to predict a 3D object. Performed experiments on the KITTI dataset show that the proposed method is highly efficient and effective, and the 3D object detection reaches (91.18%, 82.80%, 79.90%).
引用
收藏
页码:1225 / 1230
页数:6
相关论文
共 50 条
  • [31] 3D shape from unorganized 3D point clouds
    Kamberov, G
    Kamberova, G
    Jain, A
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 621 - +
  • [32] Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy
    Kyrollos Yanny
    Nick Antipa
    William Liberti
    Sam Dehaeck
    Kristina Monakhova
    Fanglin Linda Liu
    Konlin Shen
    Ren Ng
    Laura Waller
    Light: Science & Applications, 9
  • [33] 3DSSD: Point-based 3D Single Stage Object Detector
    Yang, Zetong
    Sun, Yanan
    Liu, Shu
    Jia, Jiaya
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 11037 - 11045
  • [34] DIMENSIONALITY BASED SCALE SELECTION IN 3D LIDAR POINT CLOUDS
    Demantke, Jerome
    Mallet, Clement
    David, Nicolas
    Vallet, Bruno
    ISPRS WORKSHOP LASER SCANNING 2011, 2011, 38-5 (W12): : 97 - 102
  • [35] Progress and Prospect of LiDAR Point Clouds to 3D Tree Models
    Cao W.
    Chen D.
    Shi Y.
    Cao Z.
    Xia S.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2021, 46 (02): : 203 - 220
  • [36] Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy
    Yanny, Kyrollos
    Antipa, Nick
    Liberti, William
    Dehaeck, Sam
    Monakhova, Kristina
    Liu, Fanglin Linda
    Shen, Konlin
    Ng, Ren
    Waller, Laura
    Light: Science and Applications, 2020, 9 (01):
  • [37] Monitoring Critical Infrastructure Using 3D LiDAR Point Clouds
    Sharifisoraki, Z.
    Dey, A.
    Selzler, R.
    Amini, M.
    Green, J. R.
    Rajan, S.
    Kwamena, F. A.
    IEEE ACCESS, 2023, 11 : 314 - 336
  • [38] Mobile LiDAR Scanner for the Generation of 3D Georeferenced Point Clouds
    Oria-Aguilera, Homero
    Alvarez-Perez, Hector
    Garcia-Garcia, Delvis
    2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION/XXIII CONGRESS OF THE CHILEAN ASSOCIATION OF AUTOMATIC CONTROL (ICA-ACCA), 2018,
  • [39] Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy
    Yanny, Kyrollos
    Antipa, Nick
    Liberti, William
    Dehaeck, Sam
    Monakhova, Kristina
    Liu, Fanglin Linda
    Shen, Konlin
    Ng, Ren
    Waller, Laura
    LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
  • [40] 3D Single-Object Tracking in Point Clouds with High Temporal Variation
    Wu, Qiao
    Sun, Kun
    An, Pei
    Salzmann, Mathieu
    Zhang, Yanning
    Yang, Jiaqi
    COMPUTER VISION-ECCV 2024, PT VII, 2025, 15065 : 279 - 296