A Formation Energy Predictor for Crystalline Materials Using Ensemble Data Mining

被引:0
|
作者
Agrawal, Ankit [1 ]
Meredig, Bryce [2 ,3 ]
Wolverton, Chris [2 ]
Choudhary, Alok [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Citrine Informat, Redwood City, CA USA
关键词
Materials informatics; supervised learning; ensemble learning; density functional theory; formation energy;
D O I
10.1109/ICDMW.2016.183
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Formation energy is one of the most important properties of a compound that is directly related to its stability. More negative the formation energy, the more stable the compound is likely to be. Here we describe the development and deployment of predictive models for formation energy, given the chemical composition of the material. The data-driven models described here are built using nearly 100,000 Density Functional Theory (DFT) calculations, which is a quantum mechanical simulation technique based on the electron density within the crystal structure of the material. These models are deployed in an online web-tool that takes a list of material compositions as input, generates over hundred composition-based attributes for each material and feeds them into the predictive models to obtain the predictions of formation energy. The online formation energy predictor is available at http://info.eecs.northwestern.edu/FEpredictor
引用
收藏
页码:1276 / 1279
页数:4
相关论文
共 50 条
  • [1] A Fatigue Strength Predictor for Steels Using Ensemble Data Mining
    Agrawal, Ankit
    Choudhary, Alok
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 2497 - 2500
  • [2] Martensite Start Temperature Predictor for Steels Using Ensemble Data Mining
    Agrawal, Ankit
    Saboo, Abhinav
    Xiong, Wei
    Olson, Greg
    Choudhary, Alok
    2019 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2019), 2019, : 521 - 530
  • [3] Thyroid prediction using ensemble data mining techniques
    Yadav D.C.
    Pal S.
    International Journal of Information Technology, 2022, 14 (3) : 1273 - 1283
  • [4] A System for Unstructured Data Mining using Dynamic Ensemble Selection
    Calado, Raquel Bezerra
    Rodriguez Torres, Leandro Sigfredo
    Maciel, Alexandre M. A.
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 1988 - 1993
  • [5] Mining Smart Learning Analytics Data Using Ensemble Classifiers
    Kausar, Samina
    Oyelere, Solomon Sunday
    Salal, Yass Khudheir
    Hussain, Sadiq
    Cifci, Mehmet Akif
    Hilcenko, Slavoljub
    Iqbal, Muhammad Shahid
    Zhu Wenhao
    Xu Huahu
    INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING, 2020, 15 (12) : 81 - 102
  • [6] Imbalanced Data Mining Using Oversampling and Cellular GEP Ensemble
    Jedrzejowicz, Joanna
    Jedrzejowicz, Piotr
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 360 - 372
  • [7] Lung cancer survival prediction using ensemble data mining on SEER data
    Agrawal, Ankit
    Misra, Sanchit
    Narayanan, Ramanathan
    Polepeddi, Lalith
    Choudhary, Alok
    SCIENTIFIC PROGRAMMING, 2012, 20 (01) : 29 - 42
  • [8] Colon cancer survival prediction using ensemble data mining on SEER data
    Al-Bahrani, Reda
    Agrawal, Ankit
    Choudhary, Alok
    2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2013,
  • [9] CrysXPP: An explainable property predictor for crystalline materials
    Kishalay Das
    Bidisha Samanta
    Pawan Goyal
    Seung-Cheol Lee
    Satadeep Bhattacharjee
    Niloy Ganguly
    npj Computational Materials, 8
  • [10] CrysXPP: An explainable property predictor for crystalline materials
    Das, Kishalay
    Samanta, Bidisha
    Goyal, Pawan
    Lee, Seung-Cheol
    Bhattacharjee, Satadeep
    Ganguly, Niloy
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)