CrysXPP: An explainable property predictor for crystalline materials

被引:0
|
作者
Kishalay Das
Bidisha Samanta
Pawan Goyal
Seung-Cheol Lee
Satadeep Bhattacharjee
Niloy Ganguly
机构
[1] Indian Institute of Technology Kharagpur,
[2] Indo Korea Science and Technology Center,undefined
[3] Leibniz University of Hannover,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present a deep-learning framework, CrysXPP, to allow rapid and accurate prediction of electronic, magnetic, and elastic properties of a wide range of materials. CrysXPP lowers the need for large property tagged datasets by intelligently designing an autoencoder, CrysAE. The important structural and chemical properties captured by CrysAE from a large amount of available crystal graphs data helped in achieving low prediction errors. Moreover, we design a feature selector that helps to interpret the model’s prediction. Most notably, when given a small amount of experimental data, CrysXPP is consistently able to outperform conventional DFT. A detailed ablation study establishes the importance of different design steps. We release the large pre-trained model CrysAE. We believe by fine-tuning the model with a small amount of property-tagged data, researchers can achieve superior performance on various applications with a restricted data source.
引用
收藏
相关论文
共 50 条
  • [1] CrysXPP: An explainable property predictor for crystalline materials
    Das, Kishalay
    Samanta, Bidisha
    Goyal, Pawan
    Lee, Seung-Cheol
    Bhattacharjee, Satadeep
    Ganguly, Niloy
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [2] Metallosalen-based crystalline porous materials: Synthesis and property
    Yuan, Guozan
    Jiang, Hong
    Zhang, Liyan
    Liu, Yan
    Cui, Yong
    COORDINATION CHEMISTRY REVIEWS, 2019, 378 : 483 - 499
  • [3] Photomechanical crystalline materials: new developments, property tuning and applications
    Ye, Yang
    Hao, Hongxun
    Xie, Chuang
    CRYSTENGCOMM, 2022, 24 (17) : 3136 - 3149
  • [4] Multivariate crystalline porous materials: Synthesis, property and potential application
    Jiao, Jingjing
    Gong, Wei
    Wu, Xiaowei
    Yang, Shiping
    Cui, Yong
    COORDINATION CHEMISTRY REVIEWS, 2019, 385 : 174 - 190
  • [5] A Formation Energy Predictor for Crystalline Materials Using Ensemble Data Mining
    Agrawal, Ankit
    Meredig, Bryce
    Wolverton, Chris
    Choudhary, Alok
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 1276 - 1279
  • [6] Explainable AI Enabled Conductor Galloping Predictor Design
    Sun, Jian
    Wu, Chenye
    Cheng, Yongfeng
    Liu, Bin
    Li, Danyu
    2021 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2021,
  • [7] Knowledge-based explainable pedestrian behavior predictor
    Melo, Angie Nataly
    Herrera, Luis Felipe
    Salinas, Carlota
    Sotelo, Miguel Angel
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 3348 - 3355
  • [8] An Explainable Artificial Intelligence Predictor for Early Detection of Sepsis
    Yang, Meicheng
    Liu, Chengyu
    Wang, Xingyao
    Li, Yuwen
    Gao, Hongxiang
    Liu, Xing
    Li, Jianqing
    CRITICAL CARE MEDICINE, 2020, 48 (11) : E1091 - E1096
  • [9] CrysGNN: Distilling Pre-trained Knowledge to Enhance Property Prediction for Crystalline Materials
    Das, Kishalay
    Samanta, Bidisha
    Goyal, Pawan
    Lee, Seung-Cheol
    Bhattacharjee, Satadeep
    Ganguly, Niloy
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6, 2023, : 7323 - 7331
  • [10] Explainable machine learning in materials science
    Xiaoting Zhong
    Brian Gallagher
    Shusen Liu
    Bhavya Kailkhura
    Anna Hiszpanski
    T. Yong-Jin Han
    npj Computational Materials, 8