A System for Unstructured Data Mining using Dynamic Ensemble Selection

被引:0
|
作者
Calado, Raquel Bezerra [1 ]
Rodriguez Torres, Leandro Sigfredo [2 ]
Maciel, Alexandre M. A. [1 ]
机构
[1] Univ Pernambuco, Recife, PE, Brazil
[2] Kurier Inteligencia Juridica, Recife, PE, Brazil
关键词
Unstructured Data; Text Mining; Dynamic Ensemble Selection; CLASSIFIER SELECTION; COMPETENCE; FRAMEWORK;
D O I
10.1109/smc42975.2020.9282967
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Unstructured data represent as much as 90% of all business-relevant information. In Brazil, the practice of printing official journals dates back to the 19th century. Today more than 200 official journals in circulation, which together accumulate around 1.4 billion publications without textual standard. This work proposes the development of a system for unstructured data mining using a Dynamic Ensemble Selection. JudEasy implements, added in addition to classic text pre-processing methods, a set of twelve DES and a static method for creating categorized textual models for Brazilian of official journals. As results the DES-KL model obtained the highest accuracy rate of 96.81% and exceptional precision of 0.99.
引用
收藏
页码:1988 / 1993
页数:6
相关论文
共 50 条
  • [1] Dynamic Ensemble Selection Methods for Heterogeneous Data Mining
    Ballard, Chris
    Wang, Wenjia
    [J]. PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 1021 - 1026
  • [2] Text Classification Using Ensemble Features Selection and Data Mining Techniques
    Shravankumar, B.
    Ravi, Vadlamani
    [J]. SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, SEMCCO 2014, 2015, 8947 : 176 - 186
  • [3] Dynamic integration of data mining methods using selection in a knowledge discovery management system
    Puuronen, S
    Terziyan, V
    Tsymbal, A
    [J]. COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION - INTELLIGENT IMAGE PROCESSING, DATA ANALYSIS & INFORMATION RETRIEVAL, 1999, 56 : 272 - 277
  • [4] An Ensemble System with Random Projection and Dynamic Ensemble Selection
    Manh Truong Dang
    Anh Vu Luong
    Tuyet-Trinh Vu
    Quoc Viet Hung Nguyen
    Tien Thanh Nguyen
    Stantic, Bela
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT I, 2018, 10751 : 576 - 586
  • [5] Mining Unstructured Data
    Bavota, Gabriele
    [J]. IEEE SOFTWARE, 2016, 33 (02) : 101 - 102
  • [6] Mining unstructured data for a competitive intelligence system XEW
    El Haddadi, Amine
    Fennan, Abdelhadi
    El Haddadi, Anass
    Boulouard, Zakaria
    Koutti, Lahcen
    [J]. 2015 6TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND ECONOMIC INTELLIGENCE (SIIE), 2015, : 146 - 149
  • [7] Systematic ensemble model selection approach for educational data mining
    Injadat, MohammadNoor
    Moubayed, Abdallah
    Nassif, Ali Bou
    Shami, Abdallah
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 200
  • [8] Information Fusion (Ensemble System) In Data Warehousing & Data Mining
    Ganatra, Amit P.
    [J]. 2015 5TH INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY (ICITCS), 2015,
  • [9] Mining unstructured content for recommender systems: an ensemble approach
    Marcelo G. Manzato
    Marcos A. Domingues
    Arthur C. Fortes
    Camila V. Sundermann
    Rafael M. D’Addio
    Merley S. Conrado
    Solange O. Rezende
    Maria G. C. Pimentel
    [J]. Information Retrieval Journal, 2016, 19 : 378 - 415
  • [10] A dynamic classifier ensemble selection approach for noise data
    Xiao, Jin
    He, Changzheng
    Jiang, Xiaoyi
    Liu, Dunhu
    [J]. INFORMATION SCIENCES, 2010, 180 (18) : 3402 - 3421