SUPERVISED MACHINE LEARNING PREDICTS MORTALITY IN COVID-19 PATIENTS USING ELECTRONIC HEALTH RECORDS

被引:0
|
作者
Marinaro, X. [1 ]
Meng, Z. [1 ]
Zhang, X. [1 ]
Lodaya, K. [1 ]
Hayashida, D. K. [1 ]
Munson, S. [1 ]
D'Souza, F. [1 ]
机构
[1] Boston Strateg Partners Inc, Boston, MA USA
关键词
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
ML2
引用
收藏
页码:S11 / S11
页数:1
相关论文
共 50 条
  • [41] Mortality prediction of patients in intensive care units using machine learning algorithms based on electronic health records
    Min Hyuk Choi
    Dokyun Kim
    Eui Jun Choi
    Yeo Jin Jung
    Yong Jun Choi
    Jae Hwa Cho
    Seok Hoon Jeong
    [J]. Scientific Reports, 12
  • [42] Early Mortality Risk Prediction in Covid-19 Patients Using an Ensemble of Machine Learning Models
    Walia, Harsh
    Jeevaraj, S.
    [J]. 2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 965 - 970
  • [43] Predicting Risk of Mortality in COVID-19 Hospitalized Patients using Hybrid Machine Learning Algorithms
    Afrash, Mohammad Reza
    Shanbehzadeh, Mostafa
    Kazemi-Arpanahi, Hadi
    [J]. Journal of Biomedical Physics and Engineering, 2022, 12 (06): : 611 - 626
  • [44] A hybrid machine learning framework to predict mortality in paralytic ileus patients using electronic health records (EHRs)
    Fahad Shabbir Ahmad
    Liaqat Ali
    Hasan Ali Raza-Ul-Mustafa
    Tahir Khattak
    Iram Hameed
    Seifedine Wajahat
    Syed Ahmad Chan Kadry
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12 : 3283 - 3293
  • [45] A hybrid machine learning framework to predict mortality in paralytic ileus patients using electronic health records (EHRs)
    Ahmad, Fahad Shabbir
    Ali, Liaqat
    Raza-Ul-Mustafa
    Khattak, Hasan Ali
    Hameed, Tahir
    Wajahat, Iram
    Kadry, Seifedine
    Bukhari, Syed Ahmad Chan
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (03) : 3283 - 3293
  • [46] Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID)
    Kar, Sujoy
    Chawla, Rajesh
    Haranath, Sai Praveen
    Ramasubban, Suresh
    Ramakrishnan, Nagarajan
    Vaishya, Raju
    Sibal, Anupam
    Reddy, Sangita
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [47] Early prediction of mortality risk among patients with severe COVID-19, using machine learning
    Hu, Chuanyu
    Liu, Zhenqiu
    Jiang, Yanfeng
    Shi, Oumin
    Zhang, Xin
    Xu, Kelin
    Suo, Chen
    Wang, Qin
    Song, Yujing
    Yu, Kangkang
    Mao, Xianhua
    Wu, Xuefu
    Wu, Mingshan
    Shi, Tingting
    Jiang, Wei
    Mu, Lina
    Tully, Damien C.
    Xu, Lei
    Jin, Li
    Li, Shusheng
    Tao, Xuejin
    Zhang, Tiejun
    Chen, Xingdong
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2020, 49 (06) : 1918 - 1929
  • [48] Identifying factors related to mortality of hospitalized COVID-19 patients using machine learning methods
    Hamidi, Farzaneh
    Hamishehkar, Hadi
    Markid, Pedram Pirmad Azari
    Sarbakhsh, Parvin
    [J]. HELIYON, 2024, 10 (15)
  • [49] An Early Warning Tool for Predicting Mortality Risk of COVID-19 Patients Using Machine Learning
    Chowdhury, Muhammad E. H.
    Rahman, Tawsifur
    Khandakar, Amith
    Al-Madeed, Somaya
    Zughaier, Susu M.
    Doi, Suhail A. R.
    Hassen, Hanadi
    Islam, Mohammad T.
    [J]. COGNITIVE COMPUTATION, 2024, 16 (04) : 1778 - 1793
  • [50] Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID)
    Sujoy Kar
    Rajesh Chawla
    Sai Praveen Haranath
    Suresh Ramasubban
    Nagarajan Ramakrishnan
    Raju Vaishya
    Anupam Sibal
    Sangita Reddy
    [J]. Scientific Reports, 11