ON THE FINITENESS OF p-ADIC CONTINUED FRACTIONS FOR NUMBER FIELDS

被引:6
|
作者
Capuano, Laura [1 ]
Murru, Nadir [2 ]
Terracini, Lea [3 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat Fis, Rome, Italy
[2] Univ Trento, Dipartimento Matemat, Trento, Italy
[3] Univ Torino, Dipartimento Informat, Turin, Italy
来源
关键词
p-adic continued fractions; finiteness; Weil height; normEuclidean fields; norm-Euclidean class;
D O I
10.24033/bsmf.2860
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a prime ideal p of the ring of integers of a number field K, we give a general definition of a p-adic continued fraction, which also includes classical definitions of continued fractions in the field of p-adic numbers. We give some necessary and sufficient conditions on K ensuring that for all but finitely many p, every alpha is an element of K admits a finite p-adic continued fraction expansion, addressing a similar problem posed by Rosen in the archimedean setting.
引用
收藏
页码:743 / 772
页数:30
相关论文
共 50 条
  • [21] On periodicity of p-adic Browkin continued fractions
    Laura Capuano
    Nadir Murru
    Lea Terracini
    Mathematische Zeitschrift, 2023, 305
  • [22] On the periodicity of an algorithm for p-adic continued fractions
    Nadir Murru
    Giuliano Romeo
    Giordano Santilli
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2971 - 2984
  • [23] Convergence conditions for p-adic continued fractions
    Nadir Murru
    Giuliano Romeo
    Giordano Santilli
    Research in Number Theory, 2023, 9
  • [24] Convergence conditions for p-adic continued fractions
    Murru, Nadir
    Romeo, Giuliano
    Santilli, Giordano
    RESEARCH IN NUMBER THEORY, 2023, 9 (03)
  • [25] A NEW ALGORITHM FOR p-ADIC CONTINUED FRACTIONS
    Murru, Nadir
    Romeo, Giuliano
    MATHEMATICS OF COMPUTATION, 2024, 93 (347) : 1309 - 1331
  • [26] REMARKS ON PERIODS OF P-ADIC CONTINUED FRACTIONS
    BEDOCCHI, E
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1989, 3A (02): : 209 - 214
  • [27] On the metric theory of p-adic continued fractions
    Hancl, J.
    Jassova, A.
    Lertchoosakul, P.
    Nair, R.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (01): : 42 - 56
  • [28] Schneider's p-adic continued fractions
    Pejkovic, T.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (01) : 191 - 215
  • [29] On the periodicity of an algorithm for p-adic continued fractions
    Murru, Nadir
    Romeo, Giuliano
    Santilli, Giordano
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (06) : 2971 - 2984
  • [30] On periodicity of p-adic Browkin continued fractions
    Capuano, Laura
    Murru, Nadir
    Terracini, Lea
    MATHEMATISCHE ZEITSCHRIFT, 2023, 305 (02)