Schneider's p-adic continued fractions

被引:2
|
作者
Pejkovic, T. [1 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Bijenicka cesta 30, Zagreb 10000, Croatia
关键词
p-adic number; continued fraction; irrationality exponent; APPROXIMATION;
D O I
10.1007/s10474-023-01306-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Schneider's version of p-adic continued fractions. We are interested in the finiteness of rational number expansion, the quality of approximation by convergents, the irrationality exponent of a number with a given continued fraction expansion, and the convergence of Schneider's continued fractions in the field of real numbers. The main requirement for all of these problems is a good estimate of growth for the sequences of numerators and denominators of convergents.
引用
收藏
页码:191 / 215
页数:25
相关论文
共 50 条
  • [1] Schneider’s p-adic continued fractions
    T. Pejković
    Acta Mathematica Hungarica, 2023, 169 : 191 - 215
  • [2] On the digits of Schneider's p-adic continued fractions
    Hu, Hui
    Yu, Yueli
    Zhao, Yanfen
    JOURNAL OF NUMBER THEORY, 2018, 187 : 372 - 390
  • [3] p-ADIC CONTINUED FRACTIONS (Ⅰ)
    王连祥
    Science China Mathematics, 1985, (10) : 1009 - 1017
  • [4] p-ADIC CONTINUED FRACTIONS (Ⅰ)
    王连祥
    ScienceinChina,SerA., 1985, Ser.A.1985 (10) : 1009 - 1017
  • [5] p-adic Continued Fractions Ⅲ
    王连祥
    莫德泽
    ActaMathematicaSinica, 1986, (04) : 299 - 308
  • [6] ON p-ADIC CONTINUED FRACTIONS
    Dalloul, Amran
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (05): : 875 - 886
  • [7] P-adic continued fractions
    Hirsh, Jordan
    Washington, Lawrence C.
    RAMANUJAN JOURNAL, 2011, 25 (03): : 389 - 403
  • [8] p-adic Continued Fractions Ⅲ
    王连祥
    莫德泽
    Acta Mathematica Sinica,English Series, 1986, (04) : 299 - 308
  • [9] P-adic continued fractions
    Jordan Hirsh
    Lawrence C. Washington
    The Ramanujan Journal, 2011, 25 : 389 - 403
  • [10] Quaternionic p-adic continued fractions
    Capuano, Laura
    Mula, Marzio
    Terracini, Lea
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (03) : 929 - 949