Neuro-fuzzy identification models

被引:0
|
作者
Matko, D [1 ]
Karba, R [1 ]
Zupancic, B [1 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
关键词
convergence; fuzzy models; neural network models; nonlinear models; noise characteristics;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper deals with the Neural Net and Fuzzy Models as universal approximators. Four types of models suitable for identification are presented: The Nonlinear Output Error, The Nonlinear Input Error, The Nonlinear Generalised Output Error and The Nonlinear Generalised Input Error Model. The convergence properties of all four models in the presence of disturbing noise are reviewed and it is shown that the condition for an unbiased identification is that the disturbing noise is white and that it enters the nonlinear model in specific point depending on the type of the model.
引用
收藏
页码:650 / 655
页数:6
相关论文
共 50 条
  • [41] Neuro-fuzzy systems
    Kruse, R
    Nauck, D
    [J]. COMPUTATIONAL INTELLIGENCE: SOFT COMPUTING AND FUZZY-NEURO INTEGRATION WITH APPLICATIONS, 1998, 162 : 230 - 259
  • [42] Flood Forecasting Using ANN, Neuro-Fuzzy, and Neuro-GA Models
    Mukerji, Aditya
    Chatterjee, Chandranath
    Raghuwanshi, Narendra Singh
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2009, 14 (06) : 647 - 652
  • [43] Neuro-fuzzy identification applied to fault detection in nonlinear systems
    Felipe Blazquez, L.
    de Miguel, Luis J.
    Aller, Fernando
    Peran, Jose R.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2011, 42 (10) : 1771 - 1787
  • [44] Structure identification of generalized adaptive neuro-fuzzy inference systems
    Azeem, MF
    Hanmandlu, M
    Ahmad, N
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (05) : 666 - 681
  • [45] An adaptive neuro-fuzzy identification model for the detection of meat spoilage
    Kodogiannis, Vassilis S.
    Alshejari, Abeer
    [J]. APPLIED SOFT COMPUTING, 2014, 23 : 483 - 497
  • [46] Neuro-Fuzzy Microrobotic System Identification for Haptic Intracellular Injection
    Ghanbari, Ali
    Chen, Xiaoqi
    Wang, Wenhui
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-3, 2009, : 860 - 866
  • [47] Identification of critical genes in microarray experiments by a Neuro-Fuzzy approach
    Chen, Chin-Fu
    Feng, Xin
    Szeto, Jack
    [J]. COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2006, 30 (05) : 372 - 381
  • [48] Neuro-fuzzy modelling in mining geochemistry: Identification of geochemical anomalies
    Ziaii, Mansour
    Pouyan, Ali A.
    Ziaei, Mahdi
    [J]. JOURNAL OF GEOCHEMICAL EXPLORATION, 2009, 100 (01) : 25 - 36
  • [49] Neuro-fuzzy approach for identification of traffic signs by infrared technology
    Marichal, G. N.
    Gonzalez, E. J.
    Acosta, L.
    Toledo, J.
    [J]. REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2007, 4 (02): : 26 - +
  • [50] Neuro-fuzzy architecture for identification and tracking control of a robot manipulator
    Velagic, J
    Hebibovic, M
    [J]. Soft Computing with Industrial Applications, Vol 17, 2004, 17 : 123 - 130