Neuro-fuzzy identification models

被引:0
|
作者
Matko, D [1 ]
Karba, R [1 ]
Zupancic, B [1 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
关键词
convergence; fuzzy models; neural network models; nonlinear models; noise characteristics;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper deals with the Neural Net and Fuzzy Models as universal approximators. Four types of models suitable for identification are presented: The Nonlinear Output Error, The Nonlinear Input Error, The Nonlinear Generalised Output Error and The Nonlinear Generalised Input Error Model. The convergence properties of all four models in the presence of disturbing noise are reviewed and it is shown that the condition for an unbiased identification is that the disturbing noise is white and that it enters the nonlinear model in specific point depending on the type of the model.
引用
收藏
页码:650 / 655
页数:6
相关论文
共 50 条
  • [1] Parameter identification of TSK neuro-fuzzy models
    Banakar, Ahmad
    Azeem, Mohammad Fazle
    [J]. FUZZY SETS AND SYSTEMS, 2011, 179 (01) : 62 - 82
  • [2] Simplification of Neuro-Fuzzy Models
    Siminski, Krzysztof
    [J]. MAN-MACHINE INTERACTIONS, 2009, 59 : 265 - 272
  • [3] A Neuro-Fuzzy Identification of ECG Beats
    Mohammed Amine Chikh
    Mohammed Ammar
    Radja Marouf
    [J]. Journal of Medical Systems, 2012, 36 : 903 - 914
  • [4] A Neuro-Fuzzy Identification of ECG Beats
    Chikh, Mohammed Amine
    Ammar, Mohammed
    Marouf, Radja
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (02) : 903 - 914
  • [5] Neuro-fuzzy based nonlinear models
    Nitu, C.
    Dobrescu, A.
    [J]. DEVICE APPLICATIONS OF NONLINEAR DYNAMICS, 2006, : 237 - 244
  • [6] Hierarchical neuro-fuzzy quadtree models
    de Souza, FJ
    Vellasco, MMR
    Pacheco, MAC
    [J]. FUZZY SETS AND SYSTEMS, 2002, 130 (02) : 189 - 205
  • [7] Neuro-Fuzzy Systems: Learning models
    de Carvalho, L. F.
    Monteiro, L. L.
    Nassar, S. M.
    de Azevedo, F. M.
    de Carvalho, H. J. T.
    [J]. International Conference on Computational Intelligence for Modelling, Control & Automation Jointly with International Conference on Intelligent Agents, Web Technologies & Internet Commerce, Vol 2, Proceedings, 2006, : 1122 - 1125
  • [8] Neuro and neuro-fuzzy identification for model-based control
    Fink, A
    Töpfer, S
    Isermann, R
    [J]. ADVANCED FUZZY-NEURAL CONTROL 2001, 2002, : 93 - 98
  • [9] An experimental nonlinear system identification based on local linear neuro-fuzzy models
    Nourzadeh, Hamidreza
    Fatehi, Alireza
    Labibi, Batool
    Araabi, Babak Nadjar
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-6, 2006, : 2577 - +
  • [10] Neuro-fuzzy modeling for dynamic system identification
    Jang, JSR
    [J]. SOFT COMPUTING IN INTELLIGENT SYSTEMS AND INFORMATION PROCESSING, 1996, : 320 - 325