Neuro-fuzzy based nonlinear models

被引:0
|
作者
Nitu, C. [1 ]
Dobrescu, A. [1 ]
机构
[1] Univ Politehn Bucuresti, Str Spl Independenei 313, Bucharest 74206, Romania
关键词
fuzzy control systems; automatic control; human-centered design; human factors; human perception; human reliability; human supervisory control;
D O I
10.1007/3-540-33878-0_22
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents a fuzzyfication method that consists in determining the parameters of the membership functions by using control error intervals and functions which cross these intervals. The proposed method can use constant or variable control error intervals and linear or nonlinear functions which cross these intervals and which determine the variable parameters of the neuro-fuzzy based nonlinear model with the designed membership functions. First, nonlinear models are presented, then a concrete system is analyzed in both cases: classic and adaptive.
引用
收藏
页码:237 / 244
页数:8
相关论文
共 50 条
  • [1] An experimental nonlinear system identification based on local linear neuro-fuzzy models
    Nourzadeh, Hamidreza
    Fatehi, Alireza
    Labibi, Batool
    Araabi, Babak Nadjar
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-6, 2006, : 2577 - +
  • [2] Nonlinear model-based control with local linear neuro-fuzzy models
    A. Fink
    S. Töpfer
    R. Isermann
    [J]. Archive of Applied Mechanics, 2003, 72 : 911 - 922
  • [3] Nonlinear model-based control with local linear neuro-fuzzy models
    Fink, A
    Töpfer, S
    Isermann, R
    [J]. ARCHIVE OF APPLIED MECHANICS, 2003, 72 (11-12) : 911 - 922
  • [4] Neuro-fuzzy identification models
    Matko, D
    Karba, R
    Zupancic, B
    [J]. PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY 2000, VOLS 1 AND 2, 2000, : 650 - 655
  • [5] Simplification of Neuro-Fuzzy Models
    Siminski, Krzysztof
    [J]. MAN-MACHINE INTERACTIONS, 2009, 59 : 265 - 272
  • [6] A nonlinear method of learning neuro-fuzzy models for dynamic control systems
    Bobyr, Maxim V.
    Emelyanov, Sergey G.
    [J]. APPLIED SOFT COMPUTING, 2020, 88
  • [7] Hierarchical neuro-fuzzy quadtree models
    de Souza, FJ
    Vellasco, MMR
    Pacheco, MAC
    [J]. FUZZY SETS AND SYSTEMS, 2002, 130 (02) : 189 - 205
  • [8] Neuro-Fuzzy Systems: Learning models
    de Carvalho, L. F.
    Monteiro, L. L.
    Nassar, S. M.
    de Azevedo, F. M.
    de Carvalho, H. J. T.
    [J]. International Conference on Computational Intelligence for Modelling, Control & Automation Jointly with International Conference on Intelligent Agents, Web Technologies & Internet Commerce, Vol 2, Proceedings, 2006, : 1122 - 1125
  • [9] Long Range Predictive Control of Nonlinear Processes Based on Recurrent Neuro-Fuzzy Network Models
    J. Zhang
    A.J. Morris
    [J]. Neural Computing & Applications, 2000, 9 : 50 - 59
  • [10] Long range predictive control of nonlinear processes based on recurrent neuro-fuzzy network models
    Zhang, J
    Morris, AJ
    [J]. NEURAL COMPUTING & APPLICATIONS, 2000, 9 (01): : 50 - 59