A new algorithm of selecting the radial basis function networks center

被引:0
|
作者
Wang, HR [1 ]
Wang, HB [1 ]
Wei, LX [1 ]
Li, Y [1 ]
机构
[1] Yanshan Univ, Dept Elect Engn, Qinhuangdao, Peoples R China
关键词
RBF center; fuzzy c-mean algorithm; k - nearest-neighbor algorithm; simulations;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The selecting of the radial basis function center is a key, factor that influences the performance of network. In this paper we first introduce fuzzy c-mean algorithm and k-nearest-neighbor algorithm. as to the. selection of the radial basis function center briefly, and then we present a delta - nearest-neighbor cluster algorithm, which combines, k-nearest-neighbor algorithm with fuzzy c-mean algorithm. in the end we demonstrate performance results for dynamic system identification via simulations.
引用
收藏
页码:1801 / 1804
页数:4
相关论文
共 50 条
  • [41] Normalized Gaussian radial basis function networks
    Bugmann, G
    [J]. NEUROCOMPUTING, 1998, 20 (1-3) : 97 - 110
  • [42] Monotonic Normalized Radial Basis Function Networks
    Husek, Petr
    [J]. 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 3118 - 3123
  • [43] Radial Basis Function Cascade Correlation Networks
    Lu, Weiying
    Harrington, Peter de B.
    [J]. ALGORITHMS, 2009, 2 (03) : 1045 - 1068
  • [44] Generalized multiscale radial basis function networks
    Billings, Stephen A.
    Wei, Hua-Liang
    Balikhin, Michael A.
    [J]. NEURAL NETWORKS, 2007, 20 (10) : 1081 - 1094
  • [45] Monotonicity conditions for radial basis function networks
    Husek, Petr
    [J]. 2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 168 - 173
  • [46] An Incremental Design of Radial Basis Function Networks
    Yu, Hao
    Reiner, Philip D.
    Xie, Tiantian
    Bartczak, Tomasz
    Wilamowski, Bogdan M.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1793 - 1803
  • [47] Radial Basis Function Networks with quantized parameters
    Lucks, Marcio B.
    Oki, Nobuo
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MEASUREMENT SYSTEMS AND APPLICATIONS, 2008, : 23 - 27
  • [48] Learning in Deep Radial Basis Function Networks
    Wurzberger, Fabian
    Schwenker, Friedhelm
    [J]. ENTROPY, 2024, 26 (05)
  • [49] Local modelling with radial basis function networks
    Walczak, B
    Massart, DL
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 50 (02) : 179 - 198
  • [50] Distributed representations in radial basis function networks
    Middleton, N
    [J]. 4TH NEURAL COMPUTATION AND PSYCHOLOGY WORKSHOP, LONDON, 9-11 APRIL 1997: CONNECTIONIST REPRESENTATIONS, 1997, : 16 - 25