Monotonic Normalized Radial Basis Function Networks

被引:0
|
作者
Husek, Petr [1 ]
机构
[1] Czech Tech Univ, Dept Control Engn, Fac Elect Engn, Tech 2, Prague 16627 6, Czech Republic
关键词
Radial basis function networks; Prior knowledge; Monotonic regression; Least square approximation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the paper we address the problem of deriving monotonicity conditions for normalized radial basis function networks. For general shape of the kernels the necessary conditions are expressed as trivial inequalities imposed on the kernel weights together with set of linear inequalities on elements of matrices describing the kernels. If the shape is considered to be the same for all kernels the conditions become simple and intuitive. Two examples are given to demonstrate benefit of incorporation of information about monotonicity.
引用
收藏
页码:3118 / 3123
页数:6
相关论文
共 50 条
  • [1] On Monotonic Radial Basis Function Networks
    Husek, Petr
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (02) : 717 - 727
  • [2] Normalized Gaussian radial basis function networks
    Bugmann, G
    [J]. NEUROCOMPUTING, 1998, 20 (1-3) : 97 - 110
  • [3] Nonlinear function learning by the normalized radial basis function networks
    Krzyzak, Adam
    Schaefer, Dominik
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 46 - 55
  • [4] Nonparametric regression estimation by normalized radial basis function networks
    Krzyzak, A
    Schäfer, D
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 219 - 219
  • [5] Nonparametric regression estimation by normalized radial basis function networks
    Krzyzak, A
    Schäfer, D
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (03) : 1003 - 1010
  • [6] Adaptive Linear and Normalized Combination of Radial Basis Function Networks for Function Approximation and Regression
    Wu, Yunfeng
    Luo, Xin
    Zheng, Fang
    Yang, Shanshan
    Cai, Suxian
    Ng, Sin Chun
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [7] Normalized radial basis function networks and bilinear discriminant analysis for face recognition
    Visani, M
    Garcia, C
    Jolion, JM
    [J]. AVSS 2005: ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, PROCEEDINGS, 2005, : 342 - 347
  • [8] The Normalized Radial Basis Function neural network
    Heimes, F
    van Heuveln, B
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 1609 - 1614
  • [9] Use of Normalized Radial Basis Function in Hydrology
    Cotar, Anton
    Brilly, Mitja
    [J]. LET'S FACE CHAOS THROUGH NONLINEAR DYNAMICS, 2008, 1076 : 29 - 32
  • [10] Learning and Convergence of the Normalized Radial Basis Functions Networks
    Krzyzak, Adam
    Partyka, Marian
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 118 - 129