RANDOMNESS AND NON-ERGODIC SYSTEMS

被引:0
|
作者
Franklin, Johanna N. Y. [1 ]
Towsner, Henry [2 ]
机构
[1] Hofstra Univ, Dept Math, Hempstead, NY 11549 USA
[2] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
Algorithmic randomness; Martin-Lof random; dynamical system; ergodic theorem; upcrossing; ERGODIC THEOREM; PROBABILITY; TRANSFORMATIONS; STACKING;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the points that satisfy Birkhoff's ergodic theorem under certain computability conditions in terms of algorithmic randomness. First, we use the method of cutting and stacking to show that if an element x of the Cantor space is not Martin-Lof random, there is a computable measure-preserving transformation and a computable set that witness that x is not typical with respect to the ergodic theorem, which gives us the converse of a theorem by V'yugin. We further show that if x is weakly 2-random, then it satisfies the ergodic theorem for all computable measure-preserving transformations and all lower semi-computable functions.
引用
收藏
页码:711 / 744
页数:34
相关论文
共 50 条
  • [41] On Non-Ergodic Transformations on S3
    Ganikhodjaev, Nasir N.
    Jamilov, Uygun U.
    Mukhitdinov, Ramazon T.
    [J]. INTERNATIONAL CONFERENCE ON ADVANCEMENT IN SCIENCE AND TECHNOLOGY 2012 (ICAST): CONTEMPORARY MATHEMATICS, MATHEMATICAL PHYSICS AND THEIR APPLICATIONS, 2013, 435
  • [42] On Non-Ergodic Gaussian Quadratic Stochastic Operators
    Hamzah, Nur Zatul Akmar
    Ganikhodjaev, Nasir
    [J]. PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [43] A statistical evaluation of non-ergodic variogram estimators
    Frank C. Curriero
    Michael E. Hohn
    Andrew M. Liebhold
    Subhash R. Lele
    [J]. Environmental and Ecological Statistics, 2002, 9 : 89 - 110
  • [44] NON-ERGODIC DISSOCIATION OF THE ACETONE ENOL ION
    MCADOO, DJ
    HUDSON, CE
    [J]. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES, 1984, 59 (01): : 77 - 83
  • [45] Non-ergodic delocalization in the Rosenzweig–Porter model
    Per von Soosten
    Simone Warzel
    [J]. Letters in Mathematical Physics, 2019, 109 : 905 - 922
  • [46] A statistical evaluation of non-ergodic variogram estimators
    Curriero, FC
    Hohn, ME
    Liebhold, AM
    Lele, SR
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2002, 9 (01) : 89 - 110
  • [47] Non-ergodic transport of kinetically sorbing solutes
    Fiori, A
    Bellin, A
    [J]. JOURNAL OF CONTAMINANT HYDROLOGY, 1999, 40 (03) : 201 - 219
  • [48] LYAPUNOV EXPONENTS FOR NON-ERGODIC MEROMORPHIC FUNCTIONS
    Kotus, Janina
    Balderas, Marco Montes De Oca
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1609 - 1620
  • [49] Multirelay Channel with Non-Ergodic Link Failures
    Simeone, Osvaldo
    Somekh, Oren
    Erkip, Elza
    Poor, H. Vincent
    Shamai , Shlomo
    [J]. ITW: 2009 IEEE INFORMATION THEORY WORKSHOP ON NETWORKING AND INFORMATION THEORY, 2009, : 52 - +
  • [50] STRICTLY NON-ERGODIC ACTIONS ON HOMOGENEOUS SPACES
    DANI, SG
    [J]. DUKE MATHEMATICAL JOURNAL, 1980, 47 (03) : 633 - 639