Novikov Algebras and a Classification of Multicomponent Camassa-Holm Equations

被引:26
|
作者
Strachan, Ian A. B. [1 ]
Szablikowski, Blazej M.
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow G12 8QQ, Lanark, Scotland
关键词
POISSON BRACKETS; MIURA MAPS; VIRASORO;
D O I
10.1111/sapm.12040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of multicomponent integrable systems associated with Novikov algebras, which interpolate between Korteweg-de Vries (KdV) and Camassa-Holm-type equations, is obtained. The construction is based on the classification of low-dimensional Novikov algebras by Bai and Meng. These multicomponent bi-Hamiltonian systems obtained by this construction may be interpreted as Euler equations on the centrally extended Lie algebras associated with the Novikov algebras. The related bilinear forms generating cocycles of first, second, and third order are classified. Several examples, including known integrable equations, are presented.
引用
收藏
页码:84 / 117
页数:34
相关论文
共 50 条
  • [41] GLOBAL ATTRACTOR FOR CAMASSA-HOLM TYPE EQUATIONS WITH DISSIPATIVE TERM
    杨灵娥
    郭柏灵
    Acta Mathematica Scientia, 2005, (04) : 621 - 628
  • [42] The Cauchy problem for coupled system of the generalized Camassa-Holm equations
    Ming, Sen
    Du, Jiayi
    Ma, Yaxian
    AIMS MATHEMATICS, 2022, 7 (08): : 14738 - 14755
  • [43] Finite Dimensional Uniform Attractors for the Nonautonomous Camassa-Holm Equations
    Wu, Delin
    ABSTRACT AND APPLIED ANALYSIS, 2009,
  • [44] Sharp bounds for Dirichlet eigenvalue ratios of the Camassa-Holm equations
    Chu, Jifeng
    Meng, Gang
    MATHEMATISCHE ANNALEN, 2024, 388 (02) : 1205 - 1224
  • [45] Two super Camassa-Holm equations: Reciprocal transformations and applications
    Tian, Kai
    Liu, Q. P.
    Yue, Wen Jun
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (04)
  • [46] Equations with Peakon Solutions in the Negative Order Camassa-Holm Hierarchy
    Dong, Fengfeng
    Zhou, Lingjun
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [47] The Modified Camassa-Holm Equation
    Gorka, Przemyslaw
    Reyes, Enrique G.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (12) : 2617 - 2649
  • [48] A note on the Camassa-Holm equation
    Coclite, G. M.
    Karlsen, K. H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) : 2158 - 2166
  • [49] Stability of the μ-Camassa-Holm Peakons
    Chen, Robin Ming
    Lenells, Jonatan
    Liu, Yue
    JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (01) : 97 - 112
  • [50] Peakons of the Camassa-Holm equation
    Liu, ZR
    Qian, TF
    APPLIED MATHEMATICAL MODELLING, 2002, 26 (03) : 473 - 480