Sharp bounds for Dirichlet eigenvalue ratios of the Camassa-Holm equations

被引:6
|
作者
Chu, Jifeng [1 ]
Meng, Gang [2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Primary; 34L15; 34L40; 76B15; MEASURE DIFFERENTIAL-EQUATIONS; INVERSE SPECTRAL PROBLEM; SHALLOW-WATER EQUATION; 1ST; EIGENVALUES; CONTINUOUS DEPENDENCE; ISOSPECTRAL PROBLEM; POTENTIALS; OPERATORS; NUMBER;
D O I
10.1007/s00208-022-02556-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a short proof of the maximization of Dirichlet eigenvalue ratios for the Camassa-Holm equation y " = 1/4 y + lambda m(x)y, by solving the infinitely dimensional maximization problem R-k(r, B) = sup(m is an element of E(r,B)) lambda(2k)(m)/lambda(1)(m) , k is an element of N, when the potentials satisfy that ||m||(1) <= r and m(x) <= -B for some constants r > 0 and B is an element of (0, r]. The maximization will be given as an elementary function. Our results shed new lights on such kind of problems because we do not require the potentials to be symmetric or monotone. Because the solution of the maximization problem leads to more general distributions of potentials which have no densities with respect to the Lebesgue measure, we choose the general setting of the measure differential equations dy(center dot) = 1/4 ydx + yd mu(x), to understand such problems.
引用
收藏
页码:1205 / 1224
页数:20
相关论文
共 50 条
  • [1] Sharp bounds for Dirichlet eigenvalue ratios of the Camassa–Holm equations
    Jifeng Chu
    Gang Meng
    Mathematische Annalen, 2024, 388 : 1205 - 1224
  • [2] Equations of the Camassa-Holm hierarchy
    R. I. Ivanov
    Theoretical and Mathematical Physics, 2009, 160 : 952 - 959
  • [3] The Camassa-Holm equations and turbulence
    Chen, S
    Foias, C
    Holm, DD
    Olson, E
    Titi, ES
    Wynne, S
    PHYSICA D, 1999, 133 (1-4): : 49 - 65
  • [4] Equations of the Camassa-Holm hierarchy
    Ivanov, R. I.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 160 (01) : 952 - 959
  • [5] Higher Dimensional Camassa-Holm Equations
    Lou, S. Y.
    Jia, Man
    Hao, Xia-Zhi
    CHINESE PHYSICS LETTERS, 2023, 40 (02)
  • [6] Minimization of the first positive Neumann-Dirichlet eigenvalue for the Camassa-Holm equation with indefinite potential
    Zhang, Haiyan
    Ao, Jijun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 390 : 525 - 536
  • [7] Regularity Criteria for the Viscous Camassa-Holm Equations
    Zhou, Yong
    Fan, Jishan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (13) : 2508 - 2518
  • [8] Derivation of the Camassa-Holm equations for elastic waves
    Erbay, H. A.
    Erbay, S.
    Erkip, A.
    PHYSICS LETTERS A, 2015, 379 (12-13) : 956 - 961
  • [9] Global wellposedness of cubic Camassa-Holm equations
    Zhang, Qingtian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 133 : 61 - 73
  • [10] On the Camassa-Holm and Hunter-Saxton equations
    Holden, H
    European Congress of Mathematics, 2005, : 173 - 200