Compressive Sensing and Hierarchical Clustering for Microarray Data with Missing Values

被引:0
|
作者
Ciaramellila, Angelo [1 ]
Nardone, Davide [1 ]
Staiano, Antonino [1 ]
机构
[1] Univ Naples Parthenope, Dept Sci & Technol, Isola C4, I-80143 Naples, Italy
关键词
Microarray gene expression; Missing data; Compressive Sensing; Hierarchical clustering; Saccharomyces Cerevisiae sequences;
D O I
10.1007/978-3-030-34585-3_1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Commonly, in gene expression microarray measurements multiple missing expression values are generated, and the proper handling of missing values is a critical task. To address the issue, in this paper a novel methodology, based on compressive sensing mechanism, is proposed in order to analyze gene expression data on the basis of topological characteristics of gene expression time series. The approach conceives, when data are recovered, their processing through a non-linear PCA for dimensional reduction and a Hierarchical Clustering Algorithm for agglomeration and visualization. Experiments have been performed on the yeast Saccharomyces cerevisiae dataset by considering different percentages of information loss. The approach highlights robust performance when high percentage of loss of information occurs and when few sampling data are available.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 50 条
  • [1] Verification of Improving a Clustering Algorithm for Microarray Data with Missing Values
    Kim, SuYoung
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2011, 24 (02) : 315 - 321
  • [2] Dealing with Missing Values in Microarray Data
    Mohammadi, Azadeh
    Saraee, Mohammad Hossein
    [J]. 2008 INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES, PROCEEDINGS, 2008, : 258 - 263
  • [3] Hybrid hierarchical clustering with applications to microarray data
    Chipman, H
    Tibshirani, R
    [J]. BIOSTATISTICS, 2006, 7 (02) : 286 - 301
  • [4] Robust imputation method for missing values in microarray data
    Yoon, Dankyu
    Lee, Eun-Kyung
    Park, Taesung
    [J]. BMC BIOINFORMATICS, 2007, 8 (Suppl 2)
  • [5] Imputing Missing Values in Microarray Data with Ontology Information
    Yang, Andy C.
    Hsu, Hui-Huang
    Lu, Ming-Da
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2010, : 535 - 540
  • [6] Robust imputation method for missing values in microarray data
    Dankyu Yoon
    Eun-Kyung Lee
    Taesung Park
    [J]. BMC Bioinformatics, 8
  • [7] Imputing Missing Values for Mixed Numeric and Categorical Attributes Based on Incomplete Data Hierarchical Clustering
    Feng, Xiaodong
    Wu, Sen
    Liu, Yanchi
    [J]. KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, 2011, 7091 : 414 - 424
  • [8] Effectiveness of Different Partition Based Clustering Algorithms for Estimation of Missing Values in Microarray Gene Expression Data
    Bose, Shilpi
    Das, Chandra
    Chakraborty, Abirlal
    Chattopadhyay, Samiran
    [J]. ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY, VOL 2, 2013, 177 : 37 - +
  • [9] Evolutionary Techniques for Hierarchical Clustering Applied to Microarray Data
    Castellanos-Garzon, Jos A.
    Miguel-Quintales, Luis A.
    [J]. 2ND INTERNATIONAL WORKSHOP ON PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS (IWPACBB 2008), 2009, 49 : 118 - 127
  • [10] Hierarchical Signature Clustering for Time Series Microarray Data
    Koenig, Lars
    Youn, Eunseog
    [J]. SOFTWARE TOOLS AND ALGORITHMS FOR BIOLOGICAL SYSTEMS, 2011, 696 : 57 - 65