Verification of Improving a Clustering Algorithm for Microarray Data with Missing Values

被引:0
|
作者
Kim, SuYoung [1 ]
机构
[1] Acad Korean Studies, Ctr Korean Studies Mat, Seongnam Si, Gyeonggi Do, South Korea
关键词
Microarray; gene expression; clustering; missing value;
D O I
10.5351/KJAS.2011.24.2.315
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gene expression microarray data often include multiple missing values. Most gene expression analysis (including gene clustering analysis); however, require a complete data matric as an input. In ordinary clustering methods, just a single missing value makes one abandon the whole data of a gene even if the rest of data for that gene was intact. The quality of analysis may decrease seriously as the missing rate is increased. In the opposite aspect, the imputation of missing value may result in an artifact that reduces the reliability of the analysis. To clarify this contradiction in microarray clustering analysis, this paper compared the accuracy of clustering with and without imputation over several microarray data having different missing rates. This paper also tested the clustering efficiency of several imputation methods including our proposed algorithm. The results showed it is worthwhile to check the clustering result in this alternative way without any imputed data for the imperfect microarray data.
引用
收藏
页码:315 / 321
页数:7
相关论文
共 50 条
  • [1] Compressive Sensing and Hierarchical Clustering for Microarray Data with Missing Values
    Ciaramellila, Angelo
    Nardone, Davide
    Staiano, Antonino
    [J]. COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2018, 2020, 11925 : 3 - 10
  • [2] Dealing with Missing Values in Microarray Data
    Mohammadi, Azadeh
    Saraee, Mohammad Hossein
    [J]. 2008 INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES, PROCEEDINGS, 2008, : 258 - 263
  • [3] Missing values imputation for a clustering genetic algorithm
    Hruschka, ER
    Hruschka, ER
    Ebecken, NFF
    [J]. ADVANCES IN NATURAL COMPUTATION, PT 3, PROCEEDINGS, 2005, 3612 : 245 - 254
  • [4] Imputing Missing Values in Microarray Data with Ontology Information
    Yang, Andy C.
    Hsu, Hui-Huang
    Lu, Ming-Da
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2010, : 535 - 540
  • [5] Robust imputation method for missing values in microarray data
    Yoon, Dankyu
    Lee, Eun-Kyung
    Park, Taesung
    [J]. BMC BIOINFORMATICS, 2007, 8 (Suppl 2)
  • [6] Robust imputation method for missing values in microarray data
    Dankyu Yoon
    Eun-Kyung Lee
    Taesung Park
    [J]. BMC Bioinformatics, 8
  • [7] Effectiveness of Different Partition Based Clustering Algorithms for Estimation of Missing Values in Microarray Gene Expression Data
    Bose, Shilpi
    Das, Chandra
    Chakraborty, Abirlal
    Chattopadhyay, Samiran
    [J]. ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY, VOL 2, 2013, 177 : 37 - +
  • [8] A Novel Algorithm for the Integration of the Imputation of Missing Values and Clustering
    Ben Ihay, Roni
    Herman, Maya
    [J]. MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, MLDM 2015, 2015, 9166 : 115 - 129
  • [9] Clustering Microarray Data by Using a Stochastic Algorithm
    Shon, Ho Sun
    Kim, Sunshin
    Shin, Seung Jung
    Ryu, Keun Ho
    [J]. 8TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY WORKSHOPS: CIT WORKSHOPS 2008, PROCEEDINGS, 2008, : 456 - +
  • [10] Imputation of missing values in DNA microarray gene expression data
    Kim, H
    Golub, GH
    Park, H
    [J]. 2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 572 - 573