Compressive Sensing and Hierarchical Clustering for Microarray Data with Missing Values

被引:0
|
作者
Ciaramellila, Angelo [1 ]
Nardone, Davide [1 ]
Staiano, Antonino [1 ]
机构
[1] Univ Naples Parthenope, Dept Sci & Technol, Isola C4, I-80143 Naples, Italy
关键词
Microarray gene expression; Missing data; Compressive Sensing; Hierarchical clustering; Saccharomyces Cerevisiae sequences;
D O I
10.1007/978-3-030-34585-3_1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Commonly, in gene expression microarray measurements multiple missing expression values are generated, and the proper handling of missing values is a critical task. To address the issue, in this paper a novel methodology, based on compressive sensing mechanism, is proposed in order to analyze gene expression data on the basis of topological characteristics of gene expression time series. The approach conceives, when data are recovered, their processing through a non-linear PCA for dimensional reduction and a Hierarchical Clustering Algorithm for agglomeration and visualization. Experiments have been performed on the yeast Saccharomyces cerevisiae dataset by considering different percentages of information loss. The approach highlights robust performance when high percentage of loss of information occurs and when few sampling data are available.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 50 条
  • [31] Missing value imputation improves clustering and interpretation of gene expression microarray data
    Tuikkala, Johannes
    Elo, Laura L.
    Nevalainen, Olli S.
    Aittokallio, Tero
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [32] Compressive Sensing for Missing Data Imputation in Noise Robust Speech Recognition
    Gemmeke, Jort Florent
    Van Hamme, Hugo
    Cranen, Bert
    Boves, Lou
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (02) : 272 - 287
  • [33] Estimating Missing Value in Microarray Data Using Fuzzy Clustering and Gene Ontology
    Mohammadi, Azadeh
    Saraee, Mohammad Hossein
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, PROCEEDINGS, 2008, : 382 - 385
  • [34] A Compressibility-Based Clustering Algorithm for Hierarchical Compressive Data Gathering
    Lan, Kun-Chan
    Wei, Ming-Zhi
    [J]. IEEE SENSORS JOURNAL, 2017, 17 (08) : 2550 - 2562
  • [35] Missing value imputation improves clustering and interpretation of gene expression microarray data
    Johannes Tuikkala
    Laura L Elo
    Olli S Nevalainen
    Tero Aittokallio
    [J]. BMC Bioinformatics, 9
  • [36] LSimpute: accurate estimation of missing values in microarray data with least squares methods
    Bo, TH
    Dysvik, J
    Jonassen, I
    [J]. NUCLEIC ACIDS RESEARCH, 2004, 32 (03) : e34
  • [37] Making the most of missing values: Object clustering with partial data in astronomy
    Wagstaff, KL
    Laidler, VG
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XIV, PROCEEDINGS, 2005, 347 : 172 - 176
  • [38] Imputation Strategies for Clustering Mixed-Type Data with Missing Values
    Rabea Aschenbruck
    Gero Szepannek
    Adalbert F. X. Wilhelm
    [J]. Journal of Classification, 2023, 40 : 2 - 24
  • [39] Imputation Strategies for Clustering Mixed-Type Data with Missing Values
    Aschenbruck, Rabea
    Szepannek, Gero
    Wilhelm, Adalbert F. X.
    [J]. JOURNAL OF CLASSIFICATION, 2023, 40 (01) : 2 - 24
  • [40] Clustering microarray data
    Gollub, Jeremy
    Sherlock, Gavin
    [J]. DNA MICROARRAYS, PART B: DATABASES AND STATISTICS, 2006, 411 : 194 - +