Parameter-free determination of the exchange constant in thin films using magnonic patterning

被引:11
|
作者
Langer, M. [1 ,2 ]
Wagner, K. [1 ,2 ]
Sebastian, T. [1 ]
Huebner, R. [1 ]
Grenzer, J. [1 ]
Wang, Yutian [1 ]
Kubota, T. [3 ]
Schneider, T. [1 ,4 ]
Stienen, S. [1 ]
Lenz, K. [1 ]
Schultheiss, H. [1 ]
Lindner, J. [1 ]
Takanashi, K. [3 ]
Arias, R. E. [5 ]
Fassbender, J. [1 ,2 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, Bautzner Landstr 400, D-01328 Dresden, Germany
[2] Tech Univ Dresden, Inst Phys Solids, Zellescher Weg 16, D-01069 Dresden, Germany
[3] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[4] Tech Univ Chemnitz, Dept Phys, Reichenhainer Str 70, D-09126 Chemnitz, Germany
[5] Univ Chile, Dept Fis, CEDENNA, FCFM, Casilla 487-3, Santiago, Chile
关键词
SPIN-TRANSFER TORQUE; FERROMAGNETIC-RESONANCE; PERMALLOY;
D O I
10.1063/1.4943228
中图分类号
O59 [应用物理学];
学科分类号
摘要
An all-electrical method is presented to determine the exchange constant of magnetic thin films using ferromagnetic resonance. For films of 20 nm thickness and below, the determination of the exchange constant A, a fundamental magnetic quantity, is anything but straightforward. Among others, the most common methods are based on the characterization of perpendicular standing spin-waves. These approaches are however challenging, due to (i) very high energies and (ii) rather small intensities in this thickness regime. In the presented approach, surface patterning is applied to a permalloy (Ni80Fe20) film and a Co2Fe0.4Mn0.6Si Heusler compound. Acting as a magnonic crystal, such structures enable the coupling of backward volume spin-waves to the uniform mode. Subsequent ferromagnetic resonance measurements give access to the spin-wave spectra free of unquantifiable parameters and, thus, to the exchange constant A with high accuracy. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Intrinsic parameter-free calibration of FPP using a ray phase mapping model
    Yang, Yang
    Miao, Yupei
    Liu, Xiaoli
    Pedrini, Giancarlo
    Tang, Qijian
    Osten, Wolfgang
    Peng, Xiang
    OPTICS LETTERS, 2022, 47 (14) : 3564 - 3567
  • [32] LOW-ENERGY ELECTRON CH4 COLLISIONS USING EXACT EXCHANGE PLUS PARAMETER-FREE POLARIZATION POTENTIAL
    MCNAUGHTEN, P
    THOMPSON, DG
    JAIN, A
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1990, 23 (13) : 2405 - 2424
  • [33] Gene Classification Using Parameter-Free Semi-Supervised Manifold Learning
    Huang, Hong
    Feng, Hailiang
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (03) : 818 - 827
  • [34] An Adaptive and Near Parameter-Free BRKGA Using Q-Learning Method
    Chaves, Antonio Augusto
    Nogueira Lorena, Luiz Henrique
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 2331 - 2338
  • [35] A Parameter-Free Approach to Determine the Lagrange Multiplier in the Level SetMethod by Using the BESO
    Zong, Zihao
    Shi, Tielin
    Xia, Qi
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 128 (01): : 283 - 295
  • [36] Image Thresholding Using TRIBES, a Parameter-Free Particle Swarm Optimization Algorithm
    Cooren, Yann
    Nakib, Amir
    Siarry, Patrick
    LEARNING AND INTELLIGENT OPTIMIZATION, 2008, 5313 : 81 - 94
  • [37] Transmission Line Parameter-Free Fault Location Results Using Field Data
    Fan, Wen
    Liao, Yuan
    2018 IEEE POWER AND ENERGY CONFERENCE AT ILLINOIS (PECI), 2018,
  • [38] Intuitive parameter-free visualization of tumor vascularization using rotating connectivity projections
    Wiemker, Rafael
    Buelow, Thomas
    Opfer, Roland
    Kabus, Sven
    Dharaiya, Ekta
    MEDICAL IMAGING 2008: PHYSIOLOGY, FUNCTION, AND STRUCTURE FROM MEDICAL IMAGES, 2008, 6916
  • [39] Parallel distributed processing of a parameter-free GA by using hierarchical migration methods
    Sawai, H
    Adachi, S
    GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 579 - 586
  • [40] An Efficient Brain Tumor Detection and Segmentation in MRI Using Parameter-Free Clustering
    Shivhare, Shiv Naresh
    Sharma, Shikhar
    Singh, Navjot
    MACHINE INTELLIGENCE AND SIGNAL ANALYSIS, 2019, 748 : 485 - 495