CHEMICAL ENGINEERING METHODS IN ANALYSES OF 3D CANCER CELL CULTURES: HYDRODYNAMIC AND MASS TRANSPORT CONSIDERATIONS

被引:2
|
作者
Radonjic, Mia [1 ,2 ]
Petrovic, Jelena [1 ,2 ]
Milivojevic, Milena [3 ]
Stevanovic, Milena [3 ,4 ,5 ]
Stojkovska, Jasmina [1 ,2 ]
Obradovic, Bojana [1 ]
机构
[1] Univ Belgrade, Fac Technol & Met, Karnegijeva 4, Belgrade 11000, Serbia
[2] Fac Technol & Met, Innovat Ctr, Belgrade, Serbia
[3] Univ Belgrade, Inst Mol Genet & Genet Engn, Belgrade, Serbia
[4] Univ Belgrade, Fac Biol, Belgrade, Serbia
[5] Serbian Acad Arts & Sci, Belgrade, Serbia
关键词
tumor engineering; alginate hydrogel; perfusion bioreactor; mathematical modeling; glioma C6 cell line; embryonic teratocarcinoma NT2/D1 cell line; NANOCOMPOSITE AG/ALGINATE HYDROGELS; HUMAN-SERUM TRANSFERRIN; SILVER NANOPARTICLES; BIOREACTOR; OXYGEN; SCAFFOLDS; DELIVERY; RECEPTOR; MODEL;
D O I
10.2298/CICEQ210607033R
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A multidisciplinary approach based on experiments and mathematical modeling was used in biomimetic system development for three-dimensional (3D) cultures of cancer cells. Specifically, two cancer cell lines, human embryonic teratocarcinoma NT2/D1 and rat glioma C6, were immobilized in alginate microbeads and microfibers, respectively, and cultured under static and flow conditions in perfusion bioreactors. At the same time, chemical engineering methods were applied to explain the obtained results. The superficial medium velocity of 80 mu m s(-1) induced lower viability of NT2/D1 cells in superficial microbead zones, implying adverse effects of fluid shear stresses estimated as similar to 67 mPa. On the contrary, similar velocity (100 mu m s(-1)) enhanced the proliferation of C6 glioma cells within microfibers compared to static controls. An additional study of silver release from nanocomposite Ag/honey/alginate microfibers under perfusion indicated that the medium partially flows through the hydrogel (interstitial velocity of similar to 10 nm s(-1)). Thus, a diffusion-advection-reaction model described the mass transport to immobilized cells within microfibers. Substances with diffusion coefficients of similar to 10(-)(19)-10(-11) m(2) s(-)(1) are sufficiently supplied by diffusion only, while those with significantly lower diffusivities (similar to 10(-1)(9) m(2) s(-1)) require additional convective transport. The present study demonstrates the selection and contribution of chemical engineering methods in tumor model system development.
引用
收藏
页码:211 / 223
页数:13
相关论文
共 50 条
  • [21] Multizone Paper Platform for 3D Cell Cultures
    Derda, Ratmir
    Tang, Sindy K. Y.
    Laromaine, Anna
    Mosadegh, Bobak
    Hong, Estrella
    Mwangi, Martin
    Mammoto, Akiko
    Ingber, Donald E.
    Whitesides, George M.
    PLOS ONE, 2011, 6 (05):
  • [22] Lactate Monitoring in Organotypic 3D Cell Cultures
    Hammer, S.
    Weltin, A.
    Kaminski, Y.
    Noor, F.
    Kieninger, J.
    Urban, G. A.
    EUROSENSORS 2015, 2015, 120 : 961 - 964
  • [23] 3D tubular platform monitors cell cultures
    Le Ferrand, Hortense
    MRS BULLETIN, 2019, 44 (01) : 10 - 11
  • [24] Metabolic response of 3D Cell cultures to Radiotherapy
    Thomsen, A. R.
    Messmer, M. -B
    Kollefrath, M.
    Wiehle, R.
    Reusch, J.
    Nanko, N.
    Niedermann, G.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2012, 188 : 117 - 118
  • [25] Scleractinium Coral Aquaculture Skeleton: a Possible 3D Scaffold for Cell Cultures and Bone Tissue Engineering
    Sergeeva, N. S.
    Britaev, T. A.
    Sviridova, I. K.
    Akhmedova, S. A.
    Kirsanova, V. A.
    Popov, A. A.
    Antokhin, A. I.
    Frank, G. A.
    Kaprin, A. D.
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2014, 156 (04) : 504 - 508
  • [26] Scleractinium Coral Aquaculture Skeleton: a Possible 3D Scaffold for Cell Cultures and Bone Tissue Engineering
    N. S. Sergeeva
    T. A. Britaev
    I. K. Sviridova
    S. A. Akhmedova
    V. A. Kirsanova
    A. A. Popov
    A. I. Antokhin
    G. A. Frank
    A. D. Kaprin
    Bulletin of Experimental Biology and Medicine, 2014, 156 : 504 - 508
  • [27] Engineering use of hydrodynamic 3D simulation to assess spillway discharge capacity
    Laugier, Frederic
    Guyot, Gregory
    Valette, Eric
    Blancher, Benoit
    Oguic, Arnaud
    HOUILLE BLANCHE-REVUE INTERNATIONALE DE L EAU, 2010, (02): : 36 - 46
  • [28] Use of 2D and 3D cell cultures in dermatology
    Zeitvogel, J.
    Werfel, T.
    HAUTARZT, 2020, 71 (02): : 91 - 100
  • [29] Investigating differential expression of Palladin isoform 3 in 2D and 3D pancreatic cancer cell cultures
    Biswas, Sonali
    Bush, Jason A.
    CANCER RESEARCH, 2024, 84 (06)
  • [30] How do hydrodynamic instabilities affect 3D transport in geophysical vortices?
    Wang, Peng
    Oezgoekmen, Tamay M.
    OCEAN MODELLING, 2015, 87 : 48 - 66