Imaging and Nanoprobing of Graphene Layers on Ni Damascene Interconnects by Conductive Atomic Force Microscopy

被引:0
|
作者
Zhang, Li [1 ]
Ishikura, Taishi [1 ]
Wada, Makoto [1 ]
Katagiri, Masayuki [1 ]
Nishide, Daisuke [1 ]
Matsumoto, Takashi [1 ]
Sakuma, Naoshi [1 ]
Kajita, Akihiro [1 ]
Sakai, Tadashi [1 ]
机构
[1] Low Power Elect Assoc & Project LEAP, Saiwai Ku, Kawasaki, Kanagawa 2128582, Japan
关键词
component; C-AFM; 2D-imaging; Resistance; graphene; MLG; interconnect; damascene; Ni; CVD; SEM; BSE; Raman;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene is a promising material to replace copper interconnect metallization under 10 nm in width. We report a method for evaluating graphene interconnect wiring structure by conductive atomic force microscopy (C-AFM), which enables direct measurement of the 2D-resistance distribution and coverage evaluation of multilayer graphene (MLG) grown on Ni interconnects using a 300 mm damascene process. It is demonstrated that the coverage of MLG upon Ni can be estimated more precisely by C-AFM than that by back-scattered electron scanning electron microscopy (BSE-SEM) observation. We also measured the resistance of the MLG/Ni conductor and confirmed conduction paths of the MLG/Ni interconnect. Process dependence of MLG shows that lower local resistance corresponds to higher G band and D band intensity ratio (G/D ratio) in Raman spectra. C-AFM is demonstrated to be a potential technique for local conductance evaluation of next generation interconnects.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Imaging and force probing RNA by atomic force microscopy
    Schon, Peter
    METHODS, 2016, 103 : 25 - 33
  • [42] Electrical Characteristics of Graphene Wrinkles Extracted By Conductive Atomic Force Microscopy and Electrical Measurements on Kelvin Structures
    Alnemer, Omar
    Ally, Helmy
    Alshehhi, Aamna
    Saadat, Irfan
    Souier, Tewfik
    Gougam, Adel B.
    Nayfeh, Hasan
    2013 8TH INTERNATIONAL CONFERENCE ON DESIGN & TECHNOLOGY OF INTEGRATED SYSTEMS IN NANOSCALE ERA (DTIS), 2013, : 182 - 183
  • [43] Atomic force microscopy of removal of dentin smear layers
    Carvalho Batista, Luiz Henrique
    da Silva, Lose Ginaldo, Jr.
    Andrade Silva, Milton Fernando
    Tonholo, Josealdo
    MICROSCOPY AND MICROANALYSIS, 2007, 13 (04) : 245 - 250
  • [44] Atomic force microscopy of dioxide layers for gas sensors
    Bestajev, MV
    Dimitrov, DT
    Il'yin, AY
    Kryukov, II
    Moshnikov, VA
    Trager, F
    Shtitz, F
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 1998, 62 (03): : 549 - 551
  • [45] True Atomic-Resolution Surface Imaging and Manipulation under Ambient Conditions via Conductive Atomic Force Microscopy
    Sumaiya, Saima A.
    Liu, Jun
    Baykara, Mehmet Z.
    ACS NANO, 2022, 16 (12) : 20086 - 20093
  • [46] Detecting band profiles of devices with conductive atomic force microscopy
    Li, Ranran
    Taniguchi, Takashi
    Watanabe, Kenji
    Xue, Jiamin
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (07):
  • [47] Conductive atomic force microscopy of InAs/GaAs quantum rings
    Mlakar, Tomaz
    Biasiol, Giorgio
    Heun, Stefan
    Sorba, Lucia
    Vijaykumar, T.
    Kulkarni, G. U.
    Spreafico, Vittorio
    Prato, Stefano
    APPLIED PHYSICS LETTERS, 2008, 92 (19)
  • [48] Conductive Atomic Force Microscopy failure analysis for SOI devices
    Soon-Huat, Lim
    Zheng Xinhua
    Chea-Wei, Teo
    Narang, Vinod
    Hock, Teo Beng
    Chin, J. M.
    IPFA 2008: PROCEEDINGS OF THE 15TH INTERNATIONAL SYMPOSIUM ON THE PHYSICAL & FAILURE ANALYSIS OF INTEGRATED CIRCUITS, 2008, : 96 - 99
  • [49] Conductive Atomic Force Microscopy Probes from Pyrolyzed Parylene
    Morton, Kirstin C.
    Derylo, Maksymilian A.
    Baker, Lane A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (07) : H662 - H667
  • [50] Conductive atomic force microscopy study of MBE GaN films
    Moore, J. C.
    Cooper, K. A.
    Xie, J.
    Morkoc, H.
    Baski, A. A.
    GALLIUM NITRIDE MATERIALS AND DEVICES, 2006, 6121