Imaging and Nanoprobing of Graphene Layers on Ni Damascene Interconnects by Conductive Atomic Force Microscopy

被引:0
|
作者
Zhang, Li [1 ]
Ishikura, Taishi [1 ]
Wada, Makoto [1 ]
Katagiri, Masayuki [1 ]
Nishide, Daisuke [1 ]
Matsumoto, Takashi [1 ]
Sakuma, Naoshi [1 ]
Kajita, Akihiro [1 ]
Sakai, Tadashi [1 ]
机构
[1] Low Power Elect Assoc & Project LEAP, Saiwai Ku, Kawasaki, Kanagawa 2128582, Japan
关键词
component; C-AFM; 2D-imaging; Resistance; graphene; MLG; interconnect; damascene; Ni; CVD; SEM; BSE; Raman;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene is a promising material to replace copper interconnect metallization under 10 nm in width. We report a method for evaluating graphene interconnect wiring structure by conductive atomic force microscopy (C-AFM), which enables direct measurement of the 2D-resistance distribution and coverage evaluation of multilayer graphene (MLG) grown on Ni interconnects using a 300 mm damascene process. It is demonstrated that the coverage of MLG upon Ni can be estimated more precisely by C-AFM than that by back-scattered electron scanning electron microscopy (BSE-SEM) observation. We also measured the resistance of the MLG/Ni conductor and confirmed conduction paths of the MLG/Ni interconnect. Process dependence of MLG shows that lower local resistance corresponds to higher G band and D band intensity ratio (G/D ratio) in Raman spectra. C-AFM is demonstrated to be a potential technique for local conductance evaluation of next generation interconnects.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] The Effect of Relative Humidity in Conductive Atomic Force Microscopy
    Yuan, Yue
    Lanza, Mario
    ADVANCED MATERIALS, 2024, 36 (51)
  • [22] Stripe noise removal in conductive atomic force microscopy
    Mian Li
    Jan Rieck
    Beatriz Noheda
    Jos B. T. M. Roerdink
    Michael H. F. Wilkinson
    Scientific Reports, 14
  • [23] Stripe noise removal in conductive atomic force microscopy
    Li, Mian
    Rieck, Jan
    Noheda, Beatriz
    Roerdink, Jos B. T. M.
    Wilkinson, Michael H. F.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [24] Understanding Current Instabilities in Conductive Atomic Force Microscopy
    Jiang, Lanlan
    Weber, Jonas
    Puglisi, Francesco Maria
    Pavan, Paolo
    Larcher, Luca
    Frammelsberger, Werner
    Benstetter, Guenther
    Lanza, Mario
    MATERIALS, 2019, 12 (03)
  • [25] Imaging of viruses by atomic force microscopy
    Kuznetsov, YG
    Malkin, AJ
    Lucas, RW
    Plomp, M
    McPherson, A
    JOURNAL OF GENERAL VIROLOGY, 2001, 82 : 2025 - 2034
  • [26] IMAGING OF POLYDIACETYLENES BY ATOMIC FORCE MICROSCOPY
    YAMADA, H
    OKADA, S
    FUJII, T
    KAGESHIMA, M
    KAWAZU, A
    MATSUDA, H
    NAKANISHI, H
    NAKAYAMA, K
    APPLIED SURFACE SCIENCE, 1993, 65-6 : 366 - 370
  • [27] Enhanced electrical performance for conductive atomic force microscopy
    Blasco, X
    Nafria, M
    Aymerich, X
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (01):
  • [28] Superhard, conductive coatings for atomic force microscopy cantilevers
    Ronning, C
    Wondratschek, O
    Büttner, M
    Hofsäss, H
    Zimmermann, J
    Leiderer, P
    Boneberg, J
    APPLIED PHYSICS LETTERS, 2001, 79 (19) : 3053 - 3055
  • [29] Atomic force microscopy imaging of liposomes
    Jass, J
    Tjärnhage, T
    Puu, G
    LIPOSOMES, PT A, 2003, 367 : 199 - 213
  • [30] Imaging polysaccharides by atomic force microscopy
    Kirby, AR
    Gunning, AP
    Morris, VJ
    BIOPOLYMERS, 1996, 38 (03) : 355 - 366