Submodular Hypergraphs: p-Laplacians, Cheeger Inequalities and Spectral Clustering

被引:0
|
作者
Li, Pan [1 ]
Milenkovic, Olgica [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
1-LAPLACIAN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce submodular hypergraphs, a family of hypergraphs that have different submodular weights associated with different cuts of hyper-edges. Submodular hypergraphs arise in clustering applications in which higher-order structures carry relevant information. For such hypergraphs, we define the notion of p-Laplacians and derive corresponding nodal domain theorems and k-way Cheeger inequalities. We conclude with the description of algorithms for computing the spectra of 1- and 2-Laplacians that constitute the basis of new spectral hypergraph clustering methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] An indefinite type equation involving two p-Laplacians
    Ramos Quoirin, Humberto
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (01) : 189 - 200
  • [22] Nodal domain theorems for p-Laplacians on signed graphs
    Ge, Chuanyuan
    Liu, Shiping
    Zhang, Dong
    JOURNAL OF SPECTRAL THEORY, 2023, 13 (03) : 937 - 989
  • [23] Cheeger Inequalities for Directed Graphs and Hypergraphs using Reweighted Eigenvalues
    Lau, Lap Chi
    Tung, Kam Chuen
    Wang, Robert
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 1834 - 1847
  • [24] A noncooperative elliptic system with p-Laplacians that preserves positivity
    Manásevich, R
    Sweers, G
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (04) : 511 - 528
  • [25] Eigenvalues for A Combination Between Local and Nonlocal p-Laplacians
    Leandro M. Del Pezzo
    Raúl Ferreira
    Julio D. Rossi
    Fractional Calculus and Applied Analysis, 2019, 22 : 1414 - 1436
  • [26] HOPF'S LEMMAS FOR PARABOLIC FRACTIONAL p-LAPLACIANS
    Wang, Pengyan
    Chen, Wenxiong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (09) : 3055 - 3069
  • [27] Random groups, random graphs and eigenvalues of p-Laplacians
    Drutu, Cornelia
    Mackay, John M.
    ADVANCES IN MATHEMATICS, 2019, 341 : 188 - 254
  • [28] EIGENVALUES FOR A COMBINATION BETWEEN LOCAL AND NONLOCAL p-LAPLACIANS
    Del Pezzo, Leandro M.
    Ferreira, Raul
    Rossi, Julio D.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (05) : 1414 - 1436
  • [29] Regularity estimates for fractional orthotropic p-Laplacians of mixed order
    Chaker, Jamil
    Kim, Minhyun
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1307 - 1331
  • [30] Harnack inequality for p-Laplacians associated to homogeneous p-Lagrangians
    Capitanelli, Raffaela
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (06) : 1302 - 1317