EIGENVALUES FOR A COMBINATION BETWEEN LOCAL AND NONLOCAL p-LAPLACIANS

被引:19
|
作者
Del Pezzo, Leandro M. [1 ,2 ]
Ferreira, Raul [3 ]
Rossi, Julio D. [1 ,2 ]
机构
[1] UBA, FCEyN, CONICET, Pab 1,Ciudad Univ C1428BCW, Buenos Aires, DF, Argentina
[2] UBA, FCEyN, Dept Matemat, Pab 1,Ciudad Univ C1428BCW, Buenos Aires, DF, Argentina
[3] Univ Complutense Madrid, Fac CC Quim, Dept Matemat Aplicada, E-28040 Madrid, Spain
关键词
fractional calculus; eigenvalues; p-Laplacian; MULTIPLICITY;
D O I
10.1515/fca-2019-0074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the Dirichlet eigenvalue problem -Delta(p)u - Delta(J,p)u = lambda vertical bar u vertical bar(p-2)u in Omega, u = 0 in Omega(c) = R-N\Omega. Here Omega is a bounded domain in R-N, Delta(p)u is the standard local p-Laplacian and Delta(J,p)u is a nonlocal p-homogeneous operator of order zero. We show that the first eigenvalue (that is isolated and simple) satisfies limp(p ->infinity) (lambda(1))(1/p) = Lambda where Lambda can be characterized in terms of the geometry of Omega. We also find that the eigenfunctions converge, u(infinity) = lim(p ->infinity) u(p), and find the limit problem that is satisfied in the limit.
引用
收藏
页码:1414 / 1436
页数:23
相关论文
共 50 条
  • [1] Eigenvalues for A Combination Between Local and Nonlocal p-Laplacians
    Leandro M. Del Pezzo
    Raúl Ferreira
    Julio D. Rossi
    Fractional Calculus and Applied Analysis, 2019, 22 : 1414 - 1436
  • [2] Homological eigenvalues of graph p-Laplacians
    Zhang, Dong
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2023,
  • [3] EIGENVALUES FOR SYSTEMS OF FRACTIONAL p-LAPLACIANS
    Del Pezzo, Leandro M.
    Rossi, Julio D.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (04) : 1077 - 1104
  • [4] A system of local/nonlocal p-Laplacians: The eigenvalue problem and its asymptotic limit as p → ∞
    Buccheri, S.
    da Silva, J., V
    de Miranda, L. H.
    ASYMPTOTIC ANALYSIS, 2022, 128 (02) : 149 - 181
  • [5] Random groups, random graphs and eigenvalues of p-Laplacians
    Drutu, Cornelia
    Mackay, John M.
    ADVANCES IN MATHEMATICS, 2019, 341 : 188 - 254
  • [6] Eigenvalue problems for perturbed p-Laplacians
    Hasanov, M.
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 400 - 410
  • [7] Hardy inequalities for magnetic p-Laplacians
    Cazacu, Cristian
    Krejcirik, David
    Lam, Nguyen
    Laptev, Ari
    NONLINEARITY, 2024, 37 (03)
  • [8] Hypergraph p-Laplacians and Scale Spaces
    Fazeny, Ariane
    Tenbrinck, Daniel
    Lukin, Kseniia
    Burger, Martin
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2024, 66 (04) : 529 - 549
  • [9] A limiting problem for local/non-local p-Laplacians with concave–convex nonlinearities
    João Vitor da Silva
    Ariel M. Salort
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [10] The limit as p → ∞ in the eigenvalue problem for a system of p-Laplacians
    Bonheure, Denis
    Rossi, Julio D.
    Saintier, Nicolas
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (05) : 1771 - 1785