The limit as p → ∞ in the eigenvalue problem for a system of p-Laplacians

被引:0
|
作者
Bonheure, Denis [1 ]
Rossi, Julio D. [2 ]
Saintier, Nicolas [2 ]
机构
[1] Univ Libre Bruxelles, Dept Math, CP 214,Blvd Triomphe, B-1050 Brussels, Belgium
[2] Univ Buenos Aires, FCEyN, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
关键词
p-Laplacian; Viscosity solutions; Infinity Laplacian; Nonlinear eigenvalue problem; TUG-OF-WAR; VISCOSITY SOLUTIONS;
D O I
10.1007/s10231-015-0547-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the behavior as p -> infinity of eigenvalues and eigenfunctions of a system of p-Laplacians, that is {-Delta(p)u = lambda alpha u(alpha-1)v(beta) Omega, -Delta(p)u =lambda alpha u(alpha) v(beta-1) Omega, u = v = 0, partial derivative Omega, in a bounded smooth domain Omega. Here alpha + beta = p. We assume that alpha/p -> Gamma and beta/p -> 1 -Gamma as p -> infinity and we prove that for the first eigenvalue lambda(1, p) we have (lambda(1, p))(1/ p) -> lambda(infinity) = 1/max(x is an element of Omega)dist(x, partial derivative Omega) Concerning the eigenfunctions (u(p), v(p)) associated with lambda(1, p) normalized by integral(Omega)vertical bar u(p)vertical bar(alpha)vertical bar vp vertical bar(beta) = 1, there is a uniform limit (u(infinity), v(infinity)) that is a solution to a limit minimization problem as well as a viscosity solution to {min{-Delta(infinity)u(infinity), vertical bar Delta u(infinity)vertical bar - lambda(infinity)u(infinity)(Gamma)v(infinity)(1-Gamma)} = 0, min{-Delta(infinity)v(infinity), vertical bar Delta u(infinity)vertical bar - lambda(infinity)u(infinity)(Gamma)v(infinity)(1-Gamma)} = 0 In addition, we also analyze the limit PDE when we consider higher eigenvalues.
引用
收藏
页码:1771 / 1785
页数:15
相关论文
共 50 条
  • [1] A system of local/nonlocal p-Laplacians: The eigenvalue problem and its asymptotic limit as p → ∞
    Buccheri, S.
    da Silva, J., V
    de Miranda, L. H.
    ASYMPTOTIC ANALYSIS, 2022, 128 (02) : 149 - 181
  • [2] Eigenvalue problems for perturbed p-Laplacians
    Hasanov, M.
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 400 - 410
  • [3] A limiting problem for a family of eigenvalue problems involving p-Laplacians
    Mihailescu, Mihai
    Rossi, Julio D.
    Stancu-Dumitru, Denisa
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (03): : 631 - 653
  • [4] A limiting problem for a family of eigenvalue problems involving p-Laplacians
    Mihai Mihăilescu
    Julio D. Rossi
    Denisa Stancu-Dumitru
    Revista Matemática Complutense, 2019, 32 : 631 - 653
  • [5] Global bifurcation from the first eigenvalue for a system of p-Laplacians
    Fleckinger, J
    Manasevich, R
    deThelin, F
    MATHEMATISCHE NACHRICHTEN, 1996, 182 : 217 - 242
  • [6] THE LIMIT AS p → ∞ IN FREE BOUNDARY PROBLEMS WITH FRACTIONAL p-LAPLACIANS
    Vitor da Silva, Joao
    Rossi, Julio D.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (04) : 2739 - 2769
  • [7] The first nontrivial eigenvalue for a system of p-Laplacians with Neumann and Dirichlet boundary conditions
    Del Pezzo, Leandro M.
    Rossi, Julio D.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 137 : 381 - 401
  • [8] A RESULT OF GLOBAL BIFURCATION FROM THE 1ST EIGENVALUE FOR A SYSTEM OF P-LAPLACIANS
    FLECKINGER, J
    MANASEVICH, R
    DETHELIN, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (02): : 161 - 164
  • [9] A class of multi-parameter eigenvalue problems for perturbed p-Laplacians
    Gungor, F.
    Hasanov, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 821 - 832
  • [10] A noncooperative elliptic system with p-Laplacians that preserves positivity
    Manásevich, R
    Sweers, G
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (04) : 511 - 528