The first nontrivial eigenvalue for a system of p-Laplacians with Neumann and Dirichlet boundary conditions

被引:3
|
作者
Del Pezzo, Leandro M.
Rossi, Julio D. [1 ]
机构
[1] Univ Buenos Aires, CONICET, Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
关键词
p-Laplacian; Systems; Eigenvalues; TUG-OF-WAR; VISCOSITY SOLUTIONS; INFINITY; FLOW;
D O I
10.1016/j.na.2015.09.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the first eigenvalue for a system of two p- Laplacians with Dirichlet and Neumann boundary conditions. If Delta(p)w = div(|del w|(p-2)del w) stands for the p-Laplacian and alpha/p + beta/q = 1, we consider {-Delta(p)u = lambda alpha vertical bar u vertical bar(alpha-2)u vertical bar v vertical bar(beta) in Omega, -Delta(p)v = lambda beta vertical bar u vertical bar(alpha)vertical bar v vertical bar(beta-2)v in Omega, with mixed boundary conditions u=0, vertical bar del v vertical bar(q-2) partial derivative v/partial derivative nu = 0, on partial derivative Omega. We show that there is a first non trivial eigenvalue that can be characterized by the variational minimization problem lambda(alpha,beta)(p,q) - min {integral(Omega)vertical bar del u vertical bar(p)/p dx + integral(Omega)vertical bar del v vertical bar(q)/q dx/integral(Omega)vertical bar u vertical bar(alpha)vertical bar v vertical bar(beta) dx :(u, v) is an element of A(p,q)(alpha,beta)}, where A(p,q)(alpha,beta) = {(u,v) is an element of W-0(1,p) (Omega) x W-1,W-q (Omega) : uv not equivalent to 0 and integral(Omega) vertical bar u vertical bar(alpha)vertical bar v vertical bar(beta-2) v dx =0}. We also study the limit of lambda(alpha,beta)(p,q) as p, q -> infinity assuming that a/p -> Gamma is an element of (0, 1), and q/p -> Q is an element of (0,infinity) as p, q -> infinity. We find that this limit problem interpolates between the pure Dirichlet and Neumann cases for a single equation when we take Q = 1 and the limits Gamma -> 1 and Gamma -> 0. (c) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:381 / 401
页数:21
相关论文
共 50 条
  • [1] ON THE FIRST NONTRIVIAL EIGENVALUE OF THE ∞LAPLACIAN WITH NEUMANN BOUNDARY CONDITIONS
    Rossi, J. D.
    Saintier, N.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2016, 42 (02): : 613 - 635
  • [2] Global bifurcation from the first eigenvalue for a system of p-Laplacians
    Fleckinger, J
    Manasevich, R
    deThelin, F
    [J]. MATHEMATISCHE NACHRICHTEN, 1996, 182 : 217 - 242
  • [3] The limit as p → ∞ in the eigenvalue problem for a system of p-Laplacians
    Bonheure, Denis
    Rossi, Julio D.
    Saintier, Nicolas
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (05) : 1771 - 1785
  • [4] ξ-determinants of Laplacians with Neumann and Dirichlet boundary conditions
    Loya, P
    Park, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (41): : 8967 - 8977
  • [5] MONOTONICITY WITH RESPECT TO p OF THE FIRST NONTRIVIAL EIGENVALUE OF THE p-LAPLACIAN WITH HOMOGENEOUS NEUMANN BOUNDARY CONDITIONS
    Mihailescu, Mihai
    Rossi, Julio D.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (09) : 4363 - 4371
  • [6] Eigenvalue problems for perturbed p-Laplacians
    Hasanov, M.
    [J]. ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 400 - 410
  • [7] Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions
    Haeseler, Sebastian
    Keller, Matthias
    Lenz, Daniel
    Wojciechowski, Radoslaw
    [J]. JOURNAL OF SPECTRAL THEORY, 2012, 2 (04) : 397 - 432
  • [8] Hardy inequalities for p-Laplacians with Robin boundary conditions
    Ekholm, Tomas
    Kovarik, Hynek
    Laptev, Ari
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 128 : 365 - 379
  • [9] A system of local/nonlocal p-Laplacians: The eigenvalue problem and its asymptotic limit as p → ∞
    Buccheri, S.
    da Silva, J., V
    de Miranda, L. H.
    [J]. ASYMPTOTIC ANALYSIS, 2022, 128 (02) : 149 - 181
  • [10] A RESULT OF GLOBAL BIFURCATION FROM THE 1ST EIGENVALUE FOR A SYSTEM OF P-LAPLACIANS
    FLECKINGER, J
    MANASEVICH, R
    DETHELIN, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (02): : 161 - 164